Epoxyeicosatrienoic acid (EET) has wide applications due to the unique biological effects of anti‑hyperlipidemia, inhibition of platelet aggregation, anti‑inflammation, anti‑cancer, anti‑lipid oxidation and the promotion of brain tissue development. The present study investigated whether EET ameliorates cerebral ischemia‑reperfusion injury (CIRI) by inhibiting inflammatory factors and pannexin. Specific pathogen‑free 7‑week‑old male Sprague‑Dawley rats were randomly divided into three groups: Sham, CIRI and EET. Neurological deficit scores, cerebral infarct volume and cerebral edema were assessed in CIRI rats. Enzyme‑linked immunosorbent assays were performed to detect tumor necrosis factor‑α, interleukin‑6, nuclear factor‑κB and inducible nitric oxide synthase (iNOS) levels, and western blot analysis was performed also used to assess cleaved caspase‑3, phospholipase A2 (PLA2), cyclooxygenase‑2 and prostaglandin E2 (PGE2) protein expression levels. EET ameliorated cerebral injury and CIRI‑induced cleaved caspase‑3 protein expression levels in rats. EET additionally suppressed CIRI‑induced inflammation reactions and iNOS protein expression in rats. Furthermore, the protein expression levels of PLA2, PGE2 and pannexin‑1 in CIRI rats were inhibited by treatment with EET. These results indicated that EET reduces CIRI by inhibiting inflammation and levels of cleaved caspase‑3, PLA2, PGE2 and pannexin-1.
Background and objectiveRopivacaine hydrochloride is a commonly used local anesthetic in clinics. However, local injection or continuous infusion of ropivacaine has been associated with several disadvantages. Accordingly, it is important to develop a new controlled release system for local administration of ropivacaine to achieve a prolong anesthetic effect, improve efficacy, and minimize the side effects.MethodsWe developed injectable hydroxypropyl chitin thermo-sensitive hydrogel (HPCH) combined with hyaluronan (HA), which was used to synthesize a ropivacaine (R)-loaded controlled release system. We then conducted drug release test and cytotoxicity assay in vitro. Importantly, we examined the analgesic effects and biocompatibility of this system in vivo by injecting different concentrations of R-HPCH-HA (7.5, 15, 22.5 mg/mL), ropivacaine hydrochloride (RHCL, 7.5 mg/mL), or saline (all in 0.5 mL) near the sciatic nerve in rats.ResultsR-HPCH-HA induced concentration-dependent thermal-sensory blockade and motor blockade in vivo. In hot plate test, R-HPCH-HA (22.5 mg/mL) induced a significant longer thermal-sensory blockade (17.7±0.7 hours), as compared with RHCL (7.5 mg/mL, 5.7±0.8 hours, n=6/group, p<0.05). It also produced a more prolonged motor blockade (6.8±0.8 hours) than RHCL (3.5±0.8 hours, p<0.05). R-HPCH-HA caused less cytotoxicity than RHCL, as indicated by the higher cell viability in vitro (n=8/group).ConclusionOur findings in a sciatic nerve block model demonstrated that the injectable, ropivacaine-loaded controlled release system effectively prolonged the local analgesic effect in rats without notable side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.