Scope
Human breast milk has been shown to prevent necrotizing enterocolitis (NEC). Although exosomes have been identified in breast milk, their function and components have not been fully addressed. This study is conducted to elucidate the differences in peptidomic complexities between preterm and term milk exosomes.
Methods and results
Breast milk samples are collected from healthy lactating mothers who have delivered term and preterm infants. Exosomes are separated and quantified. The protective effects of purified exosomes against NEC are investigated both in vitro and in vivo. The peptidomic complexities in term and preterm milk exosomes are analyzed by iTRAQ LC‐MS/MS to screen differentially expressed exosomal peptides. Preterm milk exosomes administration significantly enhances proliferation and migration of intestinal epithelial cells compared with term milk exosomes. A total of 70 peptides are found to be significantly modulated in preterm milk samples compared to term milk samples. Of these, 47 peptides are upregulated, and 23 peptides are downregulated. Bioinformatics analysis suggests several potential regulatory roles of the altered peptides in intestinal epithelial cell function.
Conclusion
These results reveal the differences for the first time in peptidomic complexities between preterm and term milk exosomes. Milk exosome administration might be a promising prevention for NEC.
Scope: Human milk can prevent the development of necrotizing enterocolitis (NEC). Human milk is rich in cargo-carrying exosomes that participate in intercellular communication. This study investigated the effects of term and preterm human milk-derived exosomes, and elucidated their lipid expression profiles. Methods and Results: Milk from healthy mothers is collected who have delivered full-term or preterm infants, and exosomes are isolated and quantified. Administration of term and preterm milk exosomes significantly enhances epithelial proliferation and migration in vitro, and ameliorates the severity of NEC in vivo. A total of 395 lipids are identified in term and preterm human milk-derived exosomes. Bioinformatics analysis and western blotting reveal that top 50 lipids regulate intestinal epithelial cell function via the Extracellular-Signal-Regulated Kinase/Mitogen Activated Protein Kinase (ERK/MAPK) pathway. Conclusion: This study reveals for the first time the lipidomic complexities in exosomes derived from preterm and term milk. The results provide novel mechanistic insight on how human milk prevents the development of NEC.
New perinatal care technologies have improved the survival rate of preterm neonates, but the prevalence of bronchopulmonary dysplasia (BPD), one of the most intractable problems in neonatal intensive care unit (NICU), remains unchanged. In present study, high-throughput sequencing (HTS) was performed to detect the expression profiles of long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) in hyperoxia-induced BPD mouse model. Significant differentially expressed RNAs were selected and clustered between the BPD group and the control group. The results revealed that expressions of 1778 lncRNAs, 1240 mRNAs, 97 circRNAs, and 201 miRNAs were significantly altered in the BPD group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to predict the potential functions of differentially expressed RNAs. lncRNA-mRNA and circRNA-miRNA coexpression networks were constructed to detect their association with the pathogenesis of BPD. Our study provides a systematic perspective on the potential function of RNAs during BPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.