Thanks to its high density and long durability, synthetic DNA has been widely considered as a promising solution to the data explosion problem. However, due to the large amount of random base insertion-deletion-substitution (IDSs) errors from sequencing, reliable data recovery remains a critical challenge, which hinders its large-scale application. Here, we propose a modulation-based DNA storage architecture. Experiments on simulation and real datasets demonstrate that it has two distinct advantages. First, modulation encoding provides a simple way to ensure the encoded DNA sequences comply with biological sequence constraints (i.e., GC balanced and no homopolymers); Second, modulation decoding is highly efficient and extremely robust for the detection of insertions and deletions, which can correct up to ~40% errors. These two advantages pave the way for future high-throughput and low-cost techniques, and will kickstart the actualization of a viable, large-scale system for DNA data storage.
MicroRNAs (miRNAs) are a class of small endogenous non-coding genes that play important roles in posttranscriptional regulation as well as other important biological processes. Accumulating evidence indicated that miRNAs were extensively involved in the pathology of cancer. However, determining which miRNAs are related to a specific cancer is problematic because one miRNA may target multiple genes and one gene may be targeted by multiple miRNAs. The authors proposed a new approach, named miR_SubPath, to identify cancer-associated miRNAs by three steps. The targeted genes were determined based on differentially expressed genes in significant dysfunctional subpathways. Then the candidate miRNAs were determined according to miRNA-genes associations. Finally, these candidate miRNAs were ranked based on their relations with some seed miRNAs in a functional similarity network. Results on real-world datasets showed that the proposed miR_SubPath method was more robust and could identify more cancer-related miRNAs than a prior approach, miR_Path, miR_Clust and Zhang's method.
Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (-1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA.
Boolean networks are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behavior of systems. In this paper, we investigate the less-studied one-bit perturbation, which falls under the category of structural intervention. Previous works focused on finding the optimal one-bit perturbation to maximally alter the steady-state distribution (SSD) of undesirable states through matrix perturbation theory. However, the application of the SSD is limited to Boolean networks with about ten genes. In 2007, Xiao et al. proposed to search the optimal one-bit perturbation by altering the sizes of the basin of attractions (BOAs). However, their algorithm requires close observation of the state-transition diagram. In this paper, we propose an algorithm that efficiently determines the BOA size after a perturbation. Our idea is that, if we construct the basin of states for all states, then the size of the BOA of perturbed networks can be obtained just by updating the paths of the states whose transitions have been affected. Results from both synthetic and real biological networks show that the proposed algorithm performs better than the exhaustive SSD-based algorithm and can be applied to networks with about 25 genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.