Porous carbon materials derived from waste biomass have received broad interest in supercapacitor research due to their high specific surface area, good electrical conductivity, and excellent electrochemical performance. In this work, Momordica grosvenori shell-derived porous carbons (MGCs) were synthesized by high-temperature carbonization and subsequent activation by potassium hydroxide (KOH). As a supercapacitor electrode, the optimized MGCs-2 sample exhibits superior electrochemical performance. For example, a high specific capacitance of 367 F∙g−1 is achieved at 0.5 A∙g−1. Even at 20 A∙g−1, more than 260 F∙g−1 can be retained. Moreover, it also reveals favorable cycling stability (more than 96% of capacitance retention after 10,000 cycles at 5 A∙g−1). These results demonstrate that porous carbon materials derived from Momordica grosvenori shells are one of the most promising electrode candidate materials for practical use in the fields of electrochemical energy storage and conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.