Developing new membranes with both high selectivity and permeability is critical in membrane science since conventional membranes are often limited by the trade-off between selectivity and permeability. In recent years, the emergence of advanced materials with accurate structures at atomic or molecular scale, such as MOF, COF, graphene, has accelerated the development of membranes, offering opportunities to manipulate the membrane structures precisely. In this review, current state-of-the-art membranes are first reviewed and classified into three different types according to the structures of their building blocks, including laminar structured membranes, framework structured membranes, and channel structured membranes, followed by the performance and applications for representative separations (liquid separation and gas separation) of these precisely designed membranes. Last, the challenges and opportunities of these advanced membranes are also discussed.
The content of magnesium ions (Mg2+) in drinking water is relatively high and the excessive Mg2+ ingestion may lead to pathological lesions in human body system. At present, the detection of Mg2+ still relies on costly devices or/and complex organic fluorescence probes. To solve this problem, this work proposed a NaBH4-mediated co-reduction strategy for the synthesis of glutathione-stabilized bimetallic AuAg nanoclusters (GSH@AuAg NCs) with recognition performance to Mg2+. The preparation of GSH@AuAg NCs was simple and rapid and could be performed at mild conditions. The reaction parameters and sampling orders were optimized to understand the formation mechanism of GSH@AuAg NCs. The GSH@AuAg NCs exhibited a sensitive “light-on” fluorescence response to Mg2+ due to the re-molding of the interfacial physicochemical environment following the Mg2+ coordination, which affected the surface charge transfer process, and thus led to a novel method for fluorescence detection of Mg2+ with admirable selectivity for Mg2+. The proposed method showed a detection limit of 0.2 μM, and its practical utility for the detection of Mg2+ in real sample of purified drinking water was also demonstrated, confirming its practicability in monitoring the Mg2+ concentration in drinking water.
The content of magnesium ions (Mg2+) in drinking water is relatively high and the excessive Mg2+ ingestion may lead to pathological lesions in the human body system. At present, the detection of Mg2+ still relies on costly devices or/and complex organic fluorescence probes. To solve this problem, this work proposed a NaBH4-mediated co-reduction strategy for the synthesis of glutathione-stabilized bimetallic AuAg nanoclusters (GSH@AuAg NCs) with performance recognition to Mg2+. The preparation of GSH@AuAg NCs was simple and rapid and could be performed at mild conditions. The reaction parameters and sampling orders were optimized to understand the formation mechanism of GSH@AuAg NCs. The GSH@AuAg NCs exhibited a sensitive “light on” fluorescence response to Mg2+ due to the re-molding of the interfacial physicochemical environment following the Mg2+ coordination, which affected the surface charge transfer process, and thus led to a novel method for fluorescence detection of Mg2+ with admirable selectivity for Mg2+. The proposed method showed a detection limit of 0.2 μM, and its practical utility for the detection of Mg2+ in a real sample of purified drinking water was also demonstrated, confirming its practicability in monitoring the Mg2+ concentration in drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.