BackgroundRecent evidence has suggested that peripheral inflammatory responses induced by lipopolysaccharides (LPS) play an important role in neuropsychiatric dysfunction in rodents. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, has been proposed to be a key mediator in a variety of behavioral dysfunction induced by LPS in mice. Thus, inhibition of IL-1β may have a therapeutic benefit in the treatment of neuropsychiatric disorders. However, the precise underlying mechanism of knock-down of IL-1β in repairing behavioral changes by LPS remains unclear.MethodsThe mice were treated with either IL-1β shRNA lentivirus or non-silencing shRNA control (NS shRNA) lentivirus by microinjection into the dentate gyrus (DG) regions of the hippocampus. After 7 days of recovery, LPS (1 mg/kg, i.p.) or saline was administered. The behavioral task for memory deficits was conducted in mice by the novel object recognition test (NORT), the anxiety-like behaviors were evaluated by the elevated zero maze (EZM), and the depression-like behaviors were examined by the sucrose preference test (SPT) and the forced swimming test (FST). Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO1), IL-1β, tumor necrosis factor (TNF-α), neuropeptide VGF (non-acronymic), and brain-derived neurotrophic factor (BDNF) were assayed.ResultsOur results demonstrated that IL-1β knock-down in the hippocampus significantly attenuated the memory deficits and anxiety- and depression-like behaviors induced by LPS in mice. In addition, IL-1β knock-down ameliorated the oxidative and neuroinflammatory responses and abolished the downregulation of VGF and BDNF induced by LPS.ConclusionsCollectively, our findings suggest that IL-1β is necessary for the oxidative and neuroinflammatory responses produced by LPS and offers a novel drug target in the IL-1β/oxidative/neuroinflammatory/neurotrophic pathway for treating neuropsychiatric disorders that are closely associated with neuroinflammation, oxidative stress, and the downregulation of VGF and BDNF.
Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938–0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars.
To study the genetic basis of heat tolerance at anthesis, a set of chromosome segment substitution lines (CSSLs) derived from Sasanishiki (japonica ssp. heat susceptible) and Habataki (indica spp. heat tolerant) were used for analysis across three high temperature environments. Spikelet fertility (SF), daily flowering time (DFT) and pollen shedding level (PSL) under high temperature (HT) were assessed. Eleven related QTLs were detected, of which, two QTLs qSFht2 and qSFht4.2 for spikelet fertility were identified on chromosomes 2 and 4. Four QTLs qDFT3, qDFT8, qDFT10.1 and qDFT11 for daily flowering time were detected on chromosomes 3, 8, 10 and 11. The other five QTLs qPSLht1, qPSLht4.1, qPSLht5, qPSLht7 and qPSLht10.2 on chromosomes 1, 4, 5, 7 and 10, respectively, were found had effects both on spikelet fertility and pollen shedding level. Of the 11 QTLs, 8 were overlapped with QTLs reported by others, 3 QTLs qPSLht4.1, qPSLht7 and qPSLht10.2 identified in this study were novel. The stability of qPSLht4.1 was further verified at different temperatures, which could be used to improve the pollen shedding and pollen growth on stigma for rice heat-tolerance breeding.
Peripheral inflammatory responses affect central nervous system (CNS) function, manifesting in symptoms of memory deficits, depression, and anxiety. Previous studies have revealed that neuropeptide VGF (nonacronymic) C-terminal peptide TLQP-62 rapidly reinforces brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, regulating memory consolidation and antidepressant-like action. However, whether it is beneficial for lipopolysaccharide (LPS)-induced neuropsychiatric dysfunction in mice is unknown. Herein, we explored the involvement of BDNF/TrkB signaling and biochemical alterations in inflammatory or oxidative stress markers in the alleviating effects of TLQP-62 on LPS-induced neuropsychiatric dysfunction. The mice were treated with TLQP-62 (2 μg/side) via intracerebroventricular (i.c.v.) injection 1 h before LPS (0.5 mg/kg, i.p.) administration. Our results showed that a single treatment with LPS (0.5 mg/kg, i.p) is sufficient to produce recognition memory deficits (in the novel object recognition test), depression-like behavior (in the forced swim test and sucrose preference test), and anxiety-like behavior (in the elevated zero maze). However, pretreatment with TLQP-62 prevented LPS-induced behavioral dysfunction, neuroinflammatory, and oxidative responses. In addition, our results further demonstrated that a reduction in BDNF expression mediated by BDNF-shRNA lentivirus significantly blocked the effects of TLQP-62, suggesting the critical role of BDNF/TrkB signaling in the neuroprotective effects of TLQP-62 in the mice. In conclusion, TLQP-62 could be a therapeutic approach for neuropsychiatric disorders, which are closely associated with neuroinflammation and oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.