Some scholars’ studies have demonstrated that Pro-kin balance system training is able to promote the recovery of the balance function in stroke patients. The present study has expanded on those studies, and was not merely limited to studying balance, but also encompassed walking and self-care abilities of the patients; furthermore, the association among balance and walking and self-care abilities was also explored. A total of 40 stroke patients were randomly and equally divided into 2 groups: the control group (n = 20) and the treatment group (n = 20). Both groups underwent conventional balance training, although the treatment group also underwent visual feedback balance training with the Pro-kin system. The balance function was assessed using the Berg Balance Scale (BBS), the Timed “Up & Go” (TUG) test, and Pro-kin system parameters. The Pro-kin system parameters included the perimeter and ellipse area, which were both tested once with eyes open (EO) and eyes closed (EC). Walking ability was assessed using the Holden Walking Ability Scale, according to the Functional Ambulation Classification (FAC). The self-care abilities were assessed with the Barthel Index (BI). The tests were conducted prior to training, and 3 weeks after the end of the training programme. No significant differences were noted among the groups before the training. After 3 weeks of training, for both the groups, significant improvements in balance and the walking and self-care abilities were noted: The BBS value was significantly increased ( P < .05), whereas the TUG, perimeter, and ellipse area with EO and EC measurements were significantly decreased after treatment ( P < .05). The FAC and BI readings were significantly increased after treatment ( P < 0.05), and the treatment group outperformed the control group ( P < .05). Furthermore, the balance function was shown to be strongly correlated with the walking and self-care abilities ( P < .01). The present study has demonstrated that the use of the Pro-kin visual feedback balance training system in combination with conventional training is a viable method for improving walking and self-care abilities of stroke patients.
Zingiberaceae plants are distributed in the tropical and subtropical regions of the world, being used in many famous medicinal materials. Meanwhile, some Zingiberaceae plants are important horticultural flowers because they are green all year round and have special aromas. To conduct an extensive investigation of the resources of Zingiberaceae plants, the volatile compounds of ten species of Zingiberaceae were extracted and analyzed by GC–MS, including Costus comosus var. bakeri (K.Schum.) Maas, Curcuma rubescens Roxb., Curcuma aeruginosa Roxb., Curcuma attenuata Wall., Hongfengshou, Hedychium coronarium Koeng, Zingiber zerumbet (L.) Smith, Hedychium brevicaule D. Fang, Alpinia oxyphylla Miq., and Alpinia pumila Hook.F. A total of 162 compounds were identified, and most of those identified were monoterpenes and sesquiterpenes. (E)-labda-8(17),12-diene-15,16-dial, n-hexadecanoic acid, 4-methoxy-6-phenethyl-2H-pyran-2-one, and L-β-pinene were found in high concentrations among the plants. These ten species of Zingiberaceae contained some of the same volatiles, but their contents were different. Pharmacological effects may be associated with the diversity of volatiles in these ten plants.
IntroductionThe Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is located in the south subtropical area along the southeast coast of China, which is one of the world-class urban agglomerations and an important part for economic development. In order to investigate the change of vegetation indexes and its response to climate factors in such circumstance of climate change, this study is an important component in the protection and establishment of the ecological environment in the GBA.MethodsThe Moderate Resolution Imaging Spectroradiometer-Enhanced Vegetation Index (MODIS-EVI) and climate data were recorded from National Aeronautics and Space Administration (NASA) and Resource and Environment Science Data Center of the Chinese Academy of Sciences. Trend analysis, Mann-Kendall (MK) Test and rescaled range analysis (R/S Analysis) offer an effective way of analyzing the correlation between the vegetation cover change and climate factors.ResultsThe results provide important insights into the following aspects: (1) The changes of climate factors (temperature, precipitation, wind speed, humidity, and sunshine radiation) are fluctuated in GBA, with no obvious increasing or decreasing trend. It comprehensively exhibited an extremely slow development of humidify and warming. (2) It presents an increasing trend of EVI in GBA, with the rate of 0.0045/a. The range of increase is in the middle level (0.4 ≤ EVI<0.6) based on the EVI. The vegetation cover in GBA is improved comprehensively, the area of vegetation improvement is larger than the area of vegetation degression, with the extremely improved vegetation cover area (66.98%) and the extremely degraded vegetation cover area (5.70%). There are obvious differences and agglomerations in the distribution of the EVI trends. (3) In future, the changing trends will be combinedly affected be various factors, and there is no obvious factor temporarily. The improved vegetation cover area (over 80%) are predicted. (4) There are significant spatiotemporal differences in the annual effects of EVI on various climate factors comprehensively. Wind speed and relative humidity have the strongest correlations with EVI; the area of significant correlation is more than 40% of the pixels. The correlation between temperature and EVI is second, with the area of significant correlation over 20% of the pixels. The precipitation and sunshine radiation weakly correlated with EVI, with the area of significant correlation is less than 5% of the pixels.DiscussionThe result of this study indicated that the EVI changing trend in the future by R/S analysis method is affected by climate and human factors together and there are no significant factors. The result indicated precipitation has no significant correlation with EVI trends in the Hot and humid area with mean precipitation of 1800mm. However, there is a significant positive correlation between the EVI trend and two climate factors (relative humidity and wind speed). In the terms of spatial distribution, the influence of temperature to EVI is complex in GBA, the spatial distribution of correlation is scattered.
The dynamic anisotropy and failure mechanism of shales are greatly affected by bedding surfaces. To reveal the influence of beddings on anisotropic characteristics of shales under dynamic impact, the Brazilian splitting tests were conducted by the split Hopkinson pressure bar system. The fracturing process were monitored by the high-speed camera. Meanwhile, to understand crack initiation and propagation mechanism, the stress buildup, stress shadow and stress transfer were modelled based on the digital image processing and the rock failure process analysis method. The effect of dip angle and bedding spacing on crack initiation, propagation and coalescence was analyzed. Simultaneously, the spatial distribution and energy magnitude of crack-induced acoustic emissions were captured numerically. The results show that the shale discs continue to produce parallel cracks and cambered cracks induced by the high stresses at the tips of initial cracks; the tensile strength under dynamic splitting changes in the U-shaped trend with the bedding dip angle increasing; the cracking percentage of bedding surfaces decreases, and the cracking percentage of rock matrix increases with the bedding dip angle increasing. In addition, the acceleration of crack growth and the rapid growth of AE energy can be regarded as the effective precursors of shale failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.