Pak choi (Brassica rapa ssp. chinensis Makino) is a representative seed vernalization vegetable and premature bolting in spring can cause significant economic loss. Thus, it is critical to elucidate the mechanism of molecular regulation of vernalization and floral bud initiation to prevent premature bolting. Gibberellin (GA) is the key plant hormone involved in regulating plant development. To gain a better understanding of GA metabolism in pak choi, the content of GA in pak choi was measured at different stages of plant development using enzyme-linked immunosorbent assay. The results showed that the GA content increased significantly after low-temperature treatment (4°C) and then decreased rapidly with vegetative growth. During floral bud initiation, the GA content increased rapidly until it peaked upon floral bud differentiation. To elucidate these changes in GA content, the expression of homologous genes encoding enzymes directly involved in GA metabolism were analyzed. The results showed that the changes in the expression of four genes involved in GA synthesis (Bra035120 encoding ent-kaurene synthase, Bra009868 encoding ent-kaurene oxidase, Bra015394 encoding ent-kaurenoic acid oxidase, and Bra013890 encoding GA20-oxidase) were correlated with the changes in GA content. In addition, by comparing the expression of genes involved in GA metabolism at different growth stages, seven differentially expressed genes (Bra005596, Bra009285, Bra022565, Bra008362, Bra033324, Bra010802, and Bra030500) were identified. The differential expression of these genes were directly correlated with changes in GA content, suggesting that these genes were directly related to vernalization, floral bud initiation and development. These results contribute to the understanding of the molecular mechanism of changes in GA content during different developmental phases in pak choi.
Pak choi is a seed vernalization-type plant whose vernalization mechanism is currently unclear. Therefore, it is critical to discover genes related to vernalization and research its functions during vernalization in pak choi. Here, the gene expression profiles in the shoot apex were analyzed after low temperature treatment using high-throughput RNA sequencing technology. The results showed that there are 1,664 and 1,192 differentially expressed genes (DEGs) in pak choi in cold treatment ending and before flower bud differentiation, respectively, including 42 genes that exhibited similar expression trend at both stages. Detailed annotation revealed that the proteins encoded by the DEGs are located in the extracellular region, cell junction and extracellular matrix. These proteins exhibit activity such as antioxidant activity and binding protein/transcription factor activity, and they are involved in signal transduction and the immune system/biological processes. Among the DEGs, Bra014527 was up-regulated in low temperature treatment ending, Bra024097 was up-regulated before flower bud differentiation and Bra035940 was down-regulated at both stages in low temperature-treated shoot apices. Homologues of these genes in A. thaliana, AT3G59790, AT4G30200 and AT5G61150, are involved in flowering and vernalization, suggesting that they take part in the vernalization process in pak choi. Further pathway enrichment analysis revealed that most genes were enriched in the tryptophan metabolism and glucosinolate biosynthesis pathways. However, the functions of tryptophan and glucosinolate in vernalization are not yet clear and require further analysis.
ABSTRACT. Pak choi is a highly nutritious vegetable that is widely grown in China, Southeast Asia, and other parts of the world. Because it reproduces by seed, it is very important to understand the mechanism of floral organ development. Therefore, using the Chinese cabbage genome as a reference, this study analyzed the expression profiles of shoot apex genes at flower bud differentiation stages 1 and 5, in order to identify genes related to floral organ development. The results showed that the proportion of mapped genes was high, with 84.25 and 83.80% of clean reads from the two sample saligned to the reference genome, respectively. A total of 525 differentially expressed genes (DEGs) were identified, 224 of which were upregulated and 301 were downregulated. The expression levels of genes homologous to Chinese cabbage flowering genes were also analyzed at stages 1 and 5; the expression 2 H.X. Song et al.Genetics and Molecular Research 16 (1): gmr16019233 levels of Bra012997 (ap1), Bra000393 (SOC1), and Bra004928 (SOC1) were significantly upregulated at stage 5, suggesting that these three genes positively regulate floral development in pak choi. DEGs involved in floral organ development were analyzed with homologous genes from Arabidopsis thaliana; the homologous genes Bra029281 (AGL42), Bra026577 (ARPN), Bra022954 (SPL3), Bra029293 (ARF2), Bra007978 (AtRLP12), Bra033221 (SPL8), Bra008037 (LOX4), Bra001598 (IAA19), Bra003892 (PATL1), Bra038778 (AT4G21323), Bra025315 (KLCR2), and Bra013906 (DTX35) are directly related to floral organ development in Arabidopsis, suggesting that these genes have corresponding functions during flower organ development in pak choi, and could be candidates for further genetic research. These results provide a foundation for research on the molecular mechanism of flower organ development in pak choi and other Brassica rapa vegetables.
Flowering is very important for leaf head formation and breeding. Investigating the key genes related to vernalization process can reveal the flowering regulation mechanism and guide production and germplasm breeding. In this study, two Chinese cabbage (Brassica rapa subsp. pekinensis) inbred lines ‘1#’ and ‘2#’ with different winterness were used to identify vernalization-related genes. After low-temperature treatment, the transcriptomes of the shoot apex of the two lines were analyzed. The Arabidopsis thaliana homologues of 2,932 common differentially expressed genes with the same change trend after vernalization of two inbred lines were analysed based on Gene Ontology annotation and description. The results showed that, three genes were identified that may be related to the vernalization: Bra031210, Bra009126 and Bra033615. In which Bra031210 and Bra009126 were cloned, named BrGRP7.1 and BrCPD1, with open reading frames lengths of 507 and 1443 bp, encoding 168 and 480 amino acids, respectively. Through the expression patterns analysis, the expression of BrGRP7.1 showed a trend of initial decreasing (dipping at stage 1) and then increasing (peaking at stage 5) during flower bud differentiation of both inbred lines. Incontrast, BrCPD1 showed a first decreasing, then increasing, and last decreasing trend during flower bud differentiation of both lines. These two genes were transferred into wild-type A. thaliana. The flowering time of T2 generation of BrGRP7.1- and BrCPD1-transgenic plants was 2.31~5.11 days and 2.64~4.35 days earlier than the wild-type, respectively. In conclusion, this study screened three genes that involved in the vernalization process. Through functional verification, BrGRP7.1 and BrCPD1 were proved to have the ability to promote flowering time. This study provided a reference for further study on the flowering mechanism of Chinese cabbage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.