Interest in chemical hydrogen storage has increased, because the supply of fossil fuels are limited and the harmful effects of burning fossil fuels on the environment have become a focus of public concern. Hydrogen, as one of the energy carriers, is useful for the sustainable development. However, it is widely known that controlled storage and release of hydrogen are the biggest barriers in large-scale application of hydrogen energy. Ammonia borane (NH3BH3, AB) is deemed as one of the most promising hydrogen storage candidates on account of its high hydrogen to mass ratio and environmental benignity. Development of efficient catalysts to further improve the properties of chemical kinetics in the dehydrogenation of AB under appropriate conditions is of importance for the practical application of this system. In previous studies, a variety of noble metal catalysts and their supported metal catalysts (Pt, Pd, Au, Rh, etc.) have presented great properties in decomposing the chemical hydride to generate hydrogen, thus, promoting their application in dehydrogenation of AB is urgent. We analyzed the hydrolysis of AB from the mechanism of hydrogen release reaction to understand more deeply. Based on these characteristics, we aimed to summarize recent advances in the development of noble metal catalysts, which had excellent activity and stability for AB dehydrogenation, with prospect towards realization of efficient noble metal catalysts.
Hydrous hydrazine (N2H4∙H2O) is a candidate for a hydrogen carrier for storage and transportation due to low material cost, high hydrogen content of 8.0%, and liquid stability at room temperature. Pt and Pt nanoalloy catalysts have been welcomed by researchers for the dehydrogenation of hydrous hydrazine recently. Therefore, in this review, we give a summary of Pt nanoalloy catalysts for the dehydrogenation of hydrous hydrazine and briefly introduce the decomposition mechanism of hydrous hydrazine to prove the design principle of the catalyst. The chemical characteristics of hydrous hydrazine and the mechanism of dehydrogenation reaction are briefly introduced. The catalytic activity of hydrous hydrazine on different supports and the factors affecting the selectivity of hydrogen catalyzed by Ni-Pt are analyzed. It is expected to provide a new way for the development of high-activity catalysts for the dehydrogenation of hydrous hydrazine to produce hydrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.