Understanding the Vitis species at the genomic level is important for cultivar improvement of grapevine. Here we report whole-genome genetic variation at single-base resolution of 472 Vitis accessions, which cover 48 out of 60 extant Vitis species from a wide geographic distribution. The variation helps to identify a recent dramatic expansion and contraction of effective population size in the domesticated grapevines and that cultivars from the pan-Black Sea region have a unique demographic history in comparison to the other domesticated cultivars. We also find selective sweeps for berry edibility and stress resistance improvement. Furthermore, we find associations between candidate genes and important agronomic traits, such as berry shape and aromatic compounds. These results demonstrate resource value of the resequencing data for illuminating the evolutionary biology of Vitis species and providing targets for grapevine genetic improvement.
The type II clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has been successfully applied to edit target genes in multiple plant species. However, it remains unknown whether this system can be used for genome editing in grape. In this study, we described genome editing and targeted gene mutation in ‘Chardonnay’ suspension cells and plants via the CRISPR/Cas9 system. Two single guide RNAs (sgRNAs) were designed to target distinct sites of the L-idonate dehydrogenase gene (IdnDH). CEL I endonuclease assay and sequencing results revealed the expected indel mutations at the target site, and a mutation frequency of 100% was observed in the transgenic cell mass (CM) as well as corresponding regenerated plants with expression of sgRNA1/Cas9. The majority of the detected mutations in transgenic CM were 1-bp insertions, followed by 1- to 3-nucleotide deletions. Off-target activities were also evaluated by sequencing the potential off-target sites, and no obvious off-target events were detected. Our results demonstrated that the CRISPR/Cas9 system is an efficient and specific tool for precise genome editing in grape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.