Reduced graphene oxide/Fe(2)O(3) composite was prepared using a facile two-step synthesis by homogeneous precipitation and subsequent reduction of the G-O with hydrazine under microwave irradiation to yield reduced graphene oxide (RG-O) platelets decorated with Fe(2)O(3) nanoparticles. As an anode material for Li-ion batteries, the RG-O/Fe(2)O(3) composite exhibited discharge and charge capacities of 1693 and 1227 mAh/g, respectively, normalized to the mass of Fe(2)O(3) in the composite (and ∼1355 and 982 mAh/g, respectively, based on the total mass of the composite), with good cycling performance and rate capability. Characterization shows that the Fe(2)O(3) nanoparticles are uniformly distributed on the surface of the RG-O platelets in the composite. The total specific capacity of RG-O/Fe(2)O(3) is higher than the sum of pure RG-O and nanoparticle Fe(2)O(3), indicating a positive synergistic effect of RG-O and Fe(2)O(3) on the improvement of electrochemical performance. The synthesis approach presents a promising route for a large-scale production of RG-O platelet/metal oxide nanoparticle composites as electrode materials for Li-ion batteries.
Metal-free elemental photocatalysts for hydrogen (H ) evolution are more advantageous than the traditional metal-based inorganic photocatalysts since the nonmetal elements are generally cheaper, more earth-abundant, and environmentally friendly. Black phosphorus (BP) has been attracting increasing attention in recent years based on its anisotropic 2D layered structure with tunable bandgap in the range of 0.3-2.0 eV; however, the application of BP for photocatalytic H evolution has been scarcely reported experimentally although being theoretically predicted. Herein, for the first time, the visible light photocatalytic H evolution of BP nanosheets prepared via a facile solid-state mechanochemical method by ball-milling bulk BP is reported. Without using any noble metal cocatalyst, the visible light photocatalytic hydrogen evolution rate of BP nanosheets reaches 512 µmol h g , which is ≈18 times higher than that of the bulk BP, and is comparable or even higher than that of graphitic carbon nitrides (g-C N ).
The long-standing issue of lithium dendrite growth during repeated deposition or dissolution processes hinders the practical use of lithium-metal anodes for high-energy density batteries. Here, we demonstrate a promising lithiophilic–lithiophobic gradient interfacial layer strategy in which the bottom lithiophilic zinc oxide/carbon nanotube sublayer tightly anchors the whole layer onto the lithium foil, facilitating the formation of a stable solid electrolyte interphase, and prevents the formation of an intermediate mossy lithium corrosion layer. Together with the top lithiophobic carbon nanotube sublayer, this gradient interfacial layer can effectively suppress dendrite growth and ensure ultralong-term stable lithium stripping/plating. This strategy is further demonstrated to provide substantially improved cycle performance in copper current collector, 10 cm2 pouch cell and lithium–sulfur batteries, which, coupled with a simple fabrication process and wide applicability in various materials for lithium-metal protection, makes the lithiophilic–lithiophobic gradient interfacial layer a favored strategy for next-generation lithium-metal batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.