Polymer degradation is critical for polymer flooding because it can significantly influence the viscosity of a polymer solution, which is a dominant property for polymer enhanced oil recovery (EOR). In this work, physical experiments and numerical simulations were both used to study partially hydrolyzed polyacrylamide (HPAM) degradation and its effect on polymer flooding in heterogeneous reservoirs. First, physical experiments were conducted to determine basic physicochemical properties of the polymer, including viscosity and degradation. Notably, a novel polymer dynamic degradation experiment was recommended in the evaluation process. Then, a new mathematical model was proposed and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed to examine both polymer static and dynamic degradation. The designed simulator was validated by comparison with the simulation results obtained from commercial software and the results from the polymer flooding experiments. This simulator further investigated and validated polymer degradation and its effect. The results of the physical experiments showed that the viscosity of a polymer solution increases with an increase in polymer concentration, demonstrating their underlying power law relationship. Moreover, the viscosity of a polymer solution with the same polymer concentration decreases with an increase in the shear rate, demonstrating shear thinning. Furthermore, the viscosity of a polymer solution decreased with an increase in time due to polymer degradation, exhibiting an exponential relationship. The first-order dynamic degradation rate constant of 0.0022 day−1 was greater than the first-order static degradation rate constant of 0.0017 day−1. According to the simulation results for the designed simulator, a 7.7% decrease in oil recovery, after a cumulative injection volume of 1.67 pore volume (PV) was observed between the first-order dynamic degradation rate constants of 0 and 0.1 day−1, which indicates that polymer degradation has a detrimental effect on polymer flooding efficiency.
Abstract:In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG) measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42-54 mPa·s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG) V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.
This paper provides field scale EOR survey in China which is in line with biennial worldwide EOR survey published by Oil& Gas Journal (OGJ). The EOR progress in China is not available due to language difference and other reasons in OGJ EOR survey. From 2018, EOR survey in China will be published biennially. The first part of this survey mainly focuses on basic information. Chemical flooding, unconventional heavy oil, green recovery and natural gas recovery progress in China will be surveyed and discussed in detail in the other four parts elsewhere. The EOR projects including field tests and field applications in China are summarized in the same pattern as OGJ to the largest extent for better readership outside China. Most data is collected from published journal papers and reports. Different from other countries, there are only four major oil companies in China: CNPC, SINOPEC, CNOOC and Yanchang Oil. The 28 branch companies of these four companies are both operator and owners. Oil and gas production from CNOOC is all offshore. CNPC is the largest oil company in China and its oil production in 2016 accounts for 54% oil production in China. EOR survey in China includes chemical flooding (polymer, SP and ASP flooding, gas flooding (CO2, nitrogen and air), thermal production, MEOR, and foam flooding. EOR production in China in 2016 accounts for 18% total oil production, while chemical EOR accounts for 10 %. Up to present, there has been more than 34 ASP flooding projects in China, most in Daqing. The total ASP oil production in 2016 is 407 million tons. More than 30 SP flooding projects have been carried out, with incremental oil recovery factor of 7%-18% OOIP. More than 170 polymer flooding projects have been carried out. Polymer flooding has been used widely in Daqing, Shengli, Xinjiang, Liaohe, He'nan and Bohai. The incremental oil recovery from polymer flooding and ASP flooding is 7%-15% and 18%-30% OOIP respectively. Gas flooding in China is not as successful as chemical EOR. Polymer flooding production in the largest offshore oilfield in CNOOC accounts for 25% total oil production in 2016. While EOR production in China accounts for 15%-18% in recent years, however, the world EOR oil production only accounts for about 3.3% total oil production. EOR is greatly affected by oil price, as indicated from 26 years EOR content change in America. It is the first time that detailed EOR survey in China in line with worldwide EOR survey in OGJ is given. The EOR survey in China provides valuable and helpful information for engineers and researchers in oil and gas industry.
The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.