Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.
Summary
Actin depolymerizing factor (ADF) is a key modulator for dynamic organization of actin cytoskeleton. Interestingly, it was found that the ADF1 gene silencing delays flowering, but its mechanism remains unclear. In this study, ADF1 was used as a bait to screen its interacting proteins by the yeast two‐hybrid (Y2H) system. One of them, the REM16 transcription factor was identified. As one of the AP2/B3‐like transcriptional factor family members, the REM16 contains two B3 domains and its transcript levels kept increasing during the floral transition stage. Overexpression of REM16 accelerates flowering while silencing of REM16 delays flowering. Gene expression analysis indicated that the key flowering activation genes such as CONSTANS (CO), FLOWERING LOCUS T (FT), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) were upregulated in the REM16 overexpression lines, while the transcription of the flowering suppression gene FLOWERING LOCUS C (FLC) was decreased. In contrast, the REM16 gene silencing lines contained lower transcript levels of the CO, FT, LFY and SOC1 but higher transcript levels of the FLC compared with the wild‐type plants. It was proved that REM16 could directly bind to the promoter regions of SOC1 and FT by in vitro and in vivo assays. Genetic analysis supported that REM16 acts upstream of SOC1 and FT in flowering pathways. All these studies provided strong evidence demonstrating that REM16 promotes flowering by directly activating SOC1 and FT.
The plant hormone ethylene affects many biological processes during plant growth and development. Ethylene is perceived by ethylene receptors at the endoplasmic reticulum (ER) membrane. The ETR1 ethylene receptor is positively regulated by the transmembrane protein RTE1, which localizes to the ER and Golgi apparatus. The RTE1 gene family is conserved in animals, plants, and lower eukaryotes. In Arabidopsis, RTE1-HOMOLOG (RTH) is the only homolog of the Arabidopsis RTE1 gene family. The regulatory function of the Arabidopsis RTH in ethylene signaling and plant growth is largely unknown. The present study shows Arabidopsis RTH gene expression patterns, protein co-localization with the ER and Golgi apparatus, and the altered ethylene response phenotype when RTH is knocked out or overexpressed in Arabidopsis. Compared with rte1 mutants, rth mutants exhibit less sensitivity to exogenous ethylene, while RTH overexpression confers ethylene hypersensitivity. Genetic analyses indicate that Arabidopsis RTH might not directly regulate the ethylene receptors. RTH can physically interact with RTE1, and evidence supports that RTH might act via RTE1 in regulating ethylene responses and signaling. The present study advances our understanding of the regulatory function of the Arabidopsis RTE1 gene family members in ethylene signaling.
Evidence suggests that ICR proteins function as adaptors that mediate ROP signaling. Here, we studied the functions of ICR2 and its homologs ICR5 and ICR3. We showed that ICR2 is a microtubule-associated protein that regulates microtubule dynamics. ICR2 can retrieve activated ROPs from the plasma membrane, and it is recruited to a subset of ROP domains. Secondary cell wall pits in the metaxylem of icr2 and icr5 Arabidopsis single mutants and icr2/icr5 double and icr2/icr5/icr3 triple mutants were denser and larger than those in wild-type Col-0 seedlings, implicating these three ICRs in restriction of ROP function. The icr2 but not the icr5 mutants developed split root hairs further implicating ICR2 in restriction of ROP signaling. Taken together, our results show that ICR2, and likely also ICR5 and ICR3, have multiple functions as ROP effectors and as regulators of microtubule dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.