Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it remains a challenge to understand the genetic mechanisms underlying hepatocarcinogenesis. A global gene network of differential expression profiles in HCC has yet to be fully characterized. In the present study, we performed transcriptome sequencing (mRNA and lncRNA) in liver cancer and cirrhotic tissues of nine HCC patients. We identified differentially expressed genes (DEGs) and constructed a weighted gene co-expression network for the DEGs. In total, 755 DEGs (747 mRNA and eight lncRNA) were identified, and several co-expression modules were significantly associated with HCC clinical traits, including tumor location, tumor grade, and the α-fetoprotein (AFP) level. Of note, we identified 15 hub genes in the module associated with AFP level, and three (SPX, AFP and ADGRE1) of four hub genes were validated in an independent HCC cohort (n=78). Identification of hub genes for HCC clinical traits has implications for further understanding of the molecular genetic basis of HCC.
Multiple myeloma (MM) is the second most common haematological malignancy and remains an incurable disease, with most patients relapsing and requiring further treatment. Augmenter of liver regeneration (ALR) is a vital protein affecting fundamental processes such as energy transduction, cell survival and regeneration. Silencing ALR inhibits cell proliferation and triggers apoptosis in human MM U266 cells. However, little is known about the role of 15-kDa-ALR on MM. In the present study, the role of 15-kDa-ALR in human MM cells was investigated. Blocking extracellular 15-kDa-ALR with an anti-ALR monoclonal antibody (McAb) decreased the proliferation and viability of U266 cells. However, the results of flow cytometry revealed no changes in apoptosis, and the expression levels of Bax, Bcl-2, caspase-3 and cleaved caspase-3 were not affected. However, combined treatment with anti-ALR McAb and epirubicin increased the apoptosis of U266 cells. RNA sequencing results indicated that the ERK1/2, JNK-MAPK and STAT3 signaling pathways, as well as the cell cycle, were associated with the mechanism of action of the anti-ALR McAb, and PCR, western blotting and cell cycle analysis confirmed these results. The present findings suggested that blocking extracellular 15-kDa-ALR in U266 cells with an anti-ALR McAb decreased cell proliferation via the MAPK, STAT3 and cell cycle signaling pathways without increasing apoptosis. Thus, 15-kDa-ALR may be a new therapeutic target for myeloma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.