Osteosarcoma (OS) universally exhibits heterogeneity and cisplatin (CDDP) resistance.Although the Wee1/CDC2 and NF-κB pathways were reported to show abnormal activation in some tumor cells with CDDP resistance, whether there is any concrete connection is currently unclear. We explored it in human OS cells. Materials and MethodsMultiple OS cell lines were exposed to a Wee1 inhibitor (AZD1775) and CDDP to assess the half-maximal inhibitory concentration values. Western blot, coimmunoprecipitation, confocal immunofluorescence, cell cycle, and CCK-8 assays were performed to explore the connection between the Wee1/CDC2 and NF-κB pathways and their subsequent physiological contribution to CDDP resistance. Finally, CDDP-resistant PDX-OS xenograft models were established to confirm that AZD1775 restores the antitumor effects of CDDP. ResultsA sensitivity hierarchy of OS cells to CDDP and AZD1775 exists. In the highly CDDP-tolerant cell lines, Wee1 and RelA were physically crosslinked, which resulted in increased abundance of phosphorylated CDC2 (Y15) and RelA (S536) and consequent modulation of cell cycle progression, survival and proliferation. Wee1 inhibition restored the effects of CDDP on these processes in CDDP-resistant OS cells. In addition, animal experiments with CDDP-resistant PDX-OS cells showed that AZD1775 combined with CDDP not only restored CDDP efficacy but also amplified AZD1775 in inhibiting tumor growth and prolonged the median survival of the mice. ConclusionSimultaneous enrichment of molecules in the Wee1/CDC2 and NF-κB pathways and their consequent coactivation is a new molecular mechanism of CDDP resistance in OS cells. OS CANCER RESEARCH AND TREATMENT (CRT) 4 Korean Cancer Association This article is protected by copyright. All rights reserved.with this molecular signature may respond well to Wee1 inhibition as an alternative treatment strategy.
There are three subtypes of undifferentiated human conventional osteosarcoma (HCOS): osteoblastic osteosarcoma (OOS), chondroblastic osteosarcoma (COS), and fibroblastic osteosarcoma (FOS). HCOS also exhibits heterogeneous pathological maldifferentiation in individual patients. Currently, the mechanism regulating HCOS differentiation remains unclear, and therapies are ineffective. Osteopontin (OPN) and osteocalcin (OCN) are markers of osteoblast maturation, and their expression is inhibited in HCOS. A previous study found that PLK2 inhibited TAp73 phosphorylation and consequent anti‐OS function of TAp73 in OS cells with enriched TAp73. TAp73 was also reported to regulate bone cell calcification. Here, OOS was found to have higher TAp73 levels and PLK2 expression than those in COS, which is correlated with HCOS maldifferentiation according to Spearman analysis and affects patient prognosis according to Kaplan‐Meier survival analysis. In the conventional OS cell‐line Saos2 and in patient‐derived xenograft OS (PDX‐OS) cells, increased PLK2 expression owing to abundant TAp73 levels affected OPN and OCN content as measured by RT‐PCR and Western blotting, and alizarin red staining showed that PLK2 affected calcium deposition in OS cells. In addition, PLK2 inhibition in PDX‐OS cells prohibited clone formation, as indicated by a clonogenic assay, and sensitized OS cells to cisplatin (CDDP) (which consequently limited proliferation), as shown by the CCK‐8 assay. In an established PDX animal model with abundant TAp73 levels, PLK2 inhibition or CDDP treatment prevented tumor growth and prolonged median survival. The combined therapeutic effect of PLK2 inhibition with CDDP treatment was better than that of either monotherapy. These results indicate that increased PLK2 levels due to enriched TAp73 affect osteogenic differentiation and maturation and OS prognosis. In conclusion, PLK2 is a potential target for differentiation therapy of OS with enriched TAp73.
The combination of tissue-engineered bone scaffolds with osteogenic induction molecules is an important strategy for critical-sized bone defects repair. We synthesized a novel thiolated chitosan/calcium carbonate composite microsphere (TCS-P24/CA) scaffold as a carrier for bone morphogenetic protein 2- (BMP2-) derived peptide P24 and evaluated the release kinetics of P24. The effect of TCS-P24/CA scaffolds on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) was evaluated by scanning electron microscope (SEM), CCK-8, ALP assay, alizarin red staining, and PCR. A 5 mm diameter calvarial defect was created, then new bone formation was evaluated by Micro-CT and histological examination at 4 and 8 weeks after operation. We found the sequential release of P24 could last for 29 days. Meanwhile, BMSCs revealed spindle-shaped surface morphology, indicating the TCS-P24/CA scaffolds could support cell adhesion and mRNA levels for ALP, Runx2, and COL1a1 were significantly upregulated on TCS-10%P24/CA scaffold compared with other groups in vitro (p<0.05). Similarly, the BMSCs exhibited a higher ALP activity as well as calcium deposition level on TCS-10%P24/CA scaffolds compared with other groups (p<0.05). Analysis of in vivo bone formation showed that the TCS-10%P24/CA scaffold induced more bone formation than TCS-5%P24/CA, TCS/CA, and control groups. This study demonstrates that the novel TCS-P24/CA scaffolds might contribute to the delivery of BMP2-derived Peptide P24 and is considered to be a potential candidate for repairing bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.