Background and aims
Up to 40%‐65% of patients with perihilar cholangiocarcinoma (PHC) rapidly progress to early recurrence (ER) even after curative resection. Quantification of ER risk is difficult and a reliable prognostic prediction tool is absent. We developed and validated a multilevel model, integrating clinicopathology, molecular pathology and radiology, especially radiomics coupled with machine‐learning algorithms, to predict the ER of patients after curative resection in PHC.
Methods
In total, 274 patients who underwent contrast‐enhanced CT (CECT) and curative resection at 2 institutions were retrospectively identified and randomly divided into training (n = 167), internal validation (n = 70) and external validation (n = 37) sets. A machine‐learning analysis of 18,120 radiomic features based on multiphase CECT and 48 clinico‐radiologic characteristics was performed for the multilevel model.
Results
Comprehensively, 7 independent factors (tumour differentiation, lymph node metastasis, pre‐operative CA19‐9 level, enhancement pattern, A‐Shrink score, V‐Shrink score and P‐Shrink score) were built to the multilevel model and quantified the risk of ER. We benchmarked the gain in discrimination with the area under the curve (AUC) of 0.883, superior to the rival clinical and radiomic models (AUCs 0.792‐0.805). The accuracy (ACC) of the multilevel model was 0.826, which was significantly higher than those of the conventional staging systems (AJCC 8th (0.641), MSKCC (0.617) and Gazzaniga (0.581)).
Conclusion
The radiomics‐based multilevel model demonstrated superior performance to rival models and conventional staging systems, and could serve as a visual prognostic tool to plan surveillance of ER and guide post‐operative individualized management in PHC.
Background and Aims:The study established and compared the efficacy of the clinicoradiological model, radiomics model and clinicoradiological-radiomics hybrid model in predicting the microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using gadolinium ethoxybenzyl diethylene triaminepentaacetic acid (Gd-EOB-DTPA) enhanced MRI. Methods: This was a study that enrolled 602 HCC patients from two institutions. Least absolute shrinkage and selection operator (Lasso) method was used to screen for the most important clinicoradiological and radiomics features that predict MVI pre-operatively. Three machine learning algorithms were used to establish the clinicoradiological, radiomics, and clinicoradiological-radiomics hybrid models. Area under the curve (AUC) of receiver operating characteristic (ROC) curves and Delong's test were used to compare and quantify the predictive performance of the models. Results: The AUCs of the clinicoradiological model in training and validation cohorts were 0.793 and 0.701, respectively. The radiomics signature of arterial phase (AP) images alone achieved satisfying predictive efficacy for MVI, with AUCs of 0.671 and 0.643 in training and validation cohort, respectively. The combination of clinicoradiological factors and fusion radiomics signature of AP and VP images achieved AUCs of 0.824 and 0.801 in training and validation cohorts, 0.812 and 0.805 in prospective validation and external validation cohorts, respectively. The hybrid model provided the best prediction results. The results of the Delong test revealed that there were statistically significant differences among the clinicoradiological-radiomics hybrid model, clinicoradiological model, and radiomics model (p<0.05). Conclusions: The combination of clinicoradiological factors and fusion radiomics signature of AP and VP images based on Gd-EOB-DTPA-enhanced MRI can effectively predict MVI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.