Background
VEGF/VEGFR2 pathway is the central therapeutic target in anti-angiogenic treatment in multiple cancers. However, little work has been carried out concerning the pro-malignancy functions of VEGFR2 that are independent of its pro-angiogenesis effects in gastric cancer. Here, we demonstrated that VEGFR2 up-regulation in gastric cancer tissues was a prognostic marker for poor disease-free survival and overall survival of gastric cancer patients.
Methods
Immunohistochemistry was used to detect VEGFR2 and VTN expressions in specimens. Kaplan–Meier curves were constructed for survival analysis. Stably knockdown cell lines and overexpression cell lines were constructed by small interfering RNA and plasmids transfection. Real-time PCR and Western blot were used to confirm the expressions of target genes at both RNA and protein levels. Cell proliferation was measured by using Cell Counting Kit-8 and xenograft models. Microarray and bioinformatic analysis were also performed to identify the relationship between Vitronectin (VTN) and VEGFR2.
Results
When overexpressed in gastric cancer cells, VEGFR2 increased cellular proliferation and invasion in vitro and tumor formation in xenograft models. By using integrating microarray and bioinformatic analysis, we identifiedVTN as a downstream of VEGFR2 pathway. In gain- and loss-of function analysis in gastric cancer cells, VTN was further verified in consistent with VEGFR2 in expression levels and in regulating cell growth and motility in vitro and in vivo
.
Moreover, in gastric cancer samples, VTN was as also revealed as a poor prognostic factor.
Conclusions
Our present findings defined a novel activity for VEGFR2 in promoting tumorogenicity, motility and indicating a poor survival in gastric cancer beyond its known pro-angiogenic effects.
Implications
Our present findings defined a novel activity for VEGFR2 in promoting tumorogenicity, motility and indicating a poor survival in gastric cancer beyond its known pro-angiogenic effects, which may provide a new and valuable target for design of therapies for intervention and a new cognitive perspective for the anti-angiogenesis therapies.
Electronic supplementary material
The online version of this article (10.1186/s12885-019-5322-0) contains supplementary material, which is available to authorized users.
The microRNA miR-17-92 cluster plays a fundamental role in heart development. The aim of this study was to investigate the effect of a member of this cluster, miR-17, on cardiac senescence. We examined the roles of miR-17 in senescence and demonstrated that miR-17-3p attenuates cardiac aging in the myocardium by targeting Par4 (also known as PAWR). This upregulates the downstream proteins CEBPB, FAK, N-cadherin, vimentin, Oct4 and Sca-1 (also known as stem cell antigen-1), and downregulates E-cadherin. Par4 has been reported as a tumor suppressor gene that induces apoptosis in cancer cells, but not in normal cells. Repression of Par4 by miR-17-3p enhances the transcription of CEBPB and FAK, which promotes mouse cardiac fibroblast (MCF) epithelial-tomesenchymal transition (EMT) and self-renewal, resulting in cellular senescence and apoptosis resistance. We conclude that Par4 can bind to the CEBPB promoter and inhibit its transcription. Decreased Par4 expression increases the amount of CEBPB, which binds to the FAK promoter and enhances FAK transcription. Par4, CEBPB and FAK form a senescence signaling pathway, playing roles in modulating cell survival, growth, apoptosis, EMT and self-renewal. Through this novel senescence signaling axis, miR-17-3p represses Par4 expression, acting pleiotropically as a negative modulator of cardiac aging and cardiac fibroblast cellular senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.