Ebp1, an ErbB-3 binding protein, inhibits the proliferation and induces the differentiation of human breast cancer cells. The mechanisms of these effects are unknown. Rb, the product of the retinoblastoma gene, is an important modulator of cell cycle progression and cellular differentiation. We report that Rb is a binding target for Ebp1. Ebp1 was localized to both the nucleus and the cytoplasm of logarithmically growing AU565 breast cancer cells and HeLa cells as determined by confocal immunofluorescent microscopy. Ebp1 was present in Rb immunoprecipitates derived from AU565 breast cancer cells. GST-Rb also bound endogenous Ebp1. Using GST-Ebp1 constructs, we determined that the 72 C-terminal amino acids of Ebp1 were sufficient to bind Rb. Dephosphorylation of Ebp1 enhanced the interaction of Ebp1 with Rb. The overexpression of Ebp1 in MCF-7 and AU565 (Rb(+)) cells inhibited the activity of the E2F1 regulated cyclin-E promoter. Ebp1 bound E2F1 indirectly via Rb in lysates of MCF-7 cells. The interaction of Ebp1 with Rb may prove to be an important mechanism of Ebp1 induced changes in cell proliferation and differentiation.
Ebp1, an ErbB3 binding protein that is a member of the proliferation-associated PA2G4 family, inhibits the proliferation and induces the differentiation of human ErbB positive breast and prostate cancer cell lines. Ebp1 binds the tumor suppressor retinoblastoma protein (Rb) both in vivo and in vitro, and Rb and Ebp1 cooperate to inhibit the transcription of the E2F1-regulated cyclin E promoter. We show here that Ebp1 can inhibit the transcription of other E2F-regulated reporter genes and of several endogenous E2F-regulated genes important in cell cycle progression in both Rb positive and Rb null cells. The Ebp1-mediated transcriptional repression depended on the presence of an E2F1 consensus element in the promoters. A fusion of Ebp1 with the GAL4 DNA binding domain protein had independent transcriptional repression activity that mapped to the C-terminal region of Ebp1. This C-terminal region of Ebp1 bound functional histone deacetylase (HDAC) activity and inhibitors of HDAC significantly reduced Ebp1-mediated repression. Ebp1 bound HDAC2, but not HDAC1, in vitro. An Ebp1 mutant lacking the HDAC binding domain failed to inhibit transcription. Our results suggest that Ebp1 can repress transcription of some E2F-regulated promoters and that one mechanism of Ebp1- mediated transcriptional repression is via its ability to recruit HDAC activity.
Members of the ErbB family of receptors have been implicated in regulation of androgen receptor (AR) activity. Ebp1, an ErbB-3 binding protein recently cloned in our laboratory, possesses an LXXLL motif important in mediating interactions with nuclear hormone receptors. Therefore, we sought to determine if Ebp1 could bind AR and influence AR transcriptional activation potential. We demonstrate in this study that Ebp1 bound to AR in vitro and in vivo, and that this binding was increased by androgen treatment. The C terminal 79 amino acids of Ebp1 were sufficient to bind AR. The N terminal domain of AR was responsible for binding Ebp1. Ligand-mediated transcriptional activation of both artificial and natural AR regulated promoters was inhibited by ectopic expression of ebp1 in transient transfection systems. Ebp1 deletion mutants that either lacked the C terminal AR binding region or had a mutated LXXLL motif failed to inhibit AR activated transcription. PSA expression from its endogenous promoter was also decreased in LNCaP prostate cancer cells overexpressing Ebp1. The growth of AR positive LNCaP cells was inhibited by ectopic expression of ebp1, but mutants that failed to repress transcription did not inhibit cell growth. These studies suggest that Ebp1 may play a role in the function of the AR and provide a link between ErbB receptors and the AR.
Ebp1, an ErbB-3 binding protein, translocates from the cytoplasm to the nucleus of human breast cancer cells after treatment with the ErbB-3 ligand, heregulin. The purpose of these studies was to examine the effects of ectopic expression of ebp1 on the biological properties of human ErbB-3-expressing breast carcinoma cell lines. Ectopic expression of ebp1 in ErbB-2, ErbB-3-expressing breast carcinoma cell lines resulted in inhibition of colony formation, a decreased proliferation rate, an accumulation of cells in the G2/M phase of the cell cycle, and suppression of growth in soft agar. Ectopic expression of ebp1 led to a more differentiated phenotype in AU565 breast cancer cells, as evidenced by increased expression of lipid droplets and of the milk protein casein. Basal phosphorylation of extracellular regulated kinases (Erks) 1 and 2, kinases activated by heregulin treatment, was also observed in ebp1 transfectants. The promoter for the intercellular adhesion molecule-1 gene, a heregulin-inducible gene, was constitutively activated in ebp1 transfectants as determined by reporter construct analysis. These data demonstrate that ectopic expression of the ErbB-3 binding protein Ebp1 inhibits proliferation and induces differentiation of ErbB-2, ErbB-3-expressing human breast carcinoma cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.