A key feature in adeno‐associated virus (AAV) replication is efficient integration of the viral genome into host cell DNA to establish latency when helper virus is absent. The steps involved in this process remain largely uncharacterized, even though AAV integration was first documented 20 years ago. Using a protein‐‐DNA binding method we isolated AAV‐‐cellular junction DNA sequences. The cellular component hybridized to a single restriction fragment in the virus‐free parental cell line, and also co‐migrated with AAV‐specific sequences in numerous latently infected cell lines. Analysis of somatic cell hybrids indicated that this cellular sequence maps to the distal portion of the q arm of human chromosome 19. In situ hybridization of AAV DNA to chromosomes from latently infected cells confirms the physical location of AAV integrations to be q13.4‐ter of chromosome 19. Sequence analysis of several independent integration sites shows breakpoints occurring within a 100 bp cellular region. This non‐pathogenic parvovirus thus appears to establish viral latency by integrating its DNA specifically into one chromosomal region. Such specific integration is so far unique among the eukaryotic DNA viruses. The incorporation of site‐specific integration into AAV vector schemes should make this vector system attractive for human gene therapy approaches.
Determination of signaling pathways that regulate beta-cell replication is critical for beta-cell therapy. Here, we show that blocking pancreatic macrophage infiltration after pancreatic duct ligation (PDL) completely inhibits beta-cell proliferation. The TGFβ superfamily signaling inhibitor SMAD7 was significantly up-regulated in beta cells after PDL. Beta cells failed to proliferate in response to PDL in beta-cell-specific SMAD7 mutant mice. Forced expression of SMAD7 in beta cells by itself was sufficient to promote beta-cell proliferation in vivo. M2, rather than M1 macrophages, seem to be the inducers of SMAD7-mediated beta-cell proliferation. M2 macrophages not only release TGFβ1 to directly induce up-regulation of SMAD7 in beta cells but also release EGF to activate EGF receptor signaling that inhibits TGFβ1-activated SMAD2 nuclear translocation, resulting in TGFβ signaling inhibition. SMAD7 promotes beta-cell proliferation by increasing CyclinD1 and CyclinD2, and by inducing nuclear exclusion of p27. Our study thus reveals a molecular pathway to potentially increase beta-cell mass through enhanced SMAD7 activity induced by extracellular stimuli.TGFβ superfamily signaling pathway | epidermal growth factor receptor signaling pathway
Adeno-associated virus (AAV) is a promising gene vector based on a single-stranded (ss) DNA virus. Its transgene expression requires the conversion of ssDNA to doublestranded (ds) genome, a slow process responsible for the delayed transduction and occasional inefficiency. By mutating the inverted terminal repeat, we have made novel AAV vectors that predominantly package the self-complementary dsDNA genome. The dsAAV consistently demonstrated superior and accelerated transduction in vitro and in vivo. Dramatic increases in transgene expression were observed in most of the cell lines examined, including B16 melanoma and 3LL lung cancer that are difficult to be transduced by the conventional ssAAV vectors. Similar increases were also observed in vivo in a variety of tissues including muscle and liver. The dsAAV transduced a vast majority of the hepatocytes for more than 6 months, while the ssAAV transduced only a small fraction. In addition to circumventing the requirement for DNA synthesis, the dsAAV exhibited higher in vivo DNA stability and more effective circularization than the ssAAV, suggesting potential molecular mechanisms for the faster, stronger and prolonged transgene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.