Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted in a null phenotype and nuclear/nucleolar localization consistent with the lack of nucleolar export of preribosomes accompanied by a distortion of nucleolar structure. Heterologous expression of GNL3L in a ⌬grn1 mutant restored processing of 35S pre-rRNA, nuclear export of Rpl25a and cell growth to wild-type levels. Genetic complementation in yeast and siRNA knockdown in HeLa cells confirmed the homologous proteins Grn1p and GNL3L are required for growth. Failure of two similar HSR1_MMR1 putative nucleolar GTPases, Nucleostemin (NS), or the dose-dependent response of breast tumor autoantigen NGP-1, to rescue ⌬grn1 implied the highly specific roles of Grn1p or GNL3L in nucleolar events. Our analysis uncovers an important role for Grn1p/GNL3L within this unique group of nucleolar GTPases.
In a systematic approach to study genes that are related to nucleocytoplasmic trafficking in the fission yeast Schizosaccharomyces pombe, the open reading frames (ORFs) of 26 putative nucleoporins and transport factors were deleted. Here we report the initial characterization of these deletion mutants. Of the 26 putative genes deleted, 14 were found to be essential for viability. Null mutations of essential genes resulted in failure to either complete one round or to sustain cell division. Four of the 14 essential genes, SPBC582.11c, SPBC17G9.04c, SPBC3B9.16c and SPCC162.08c, encode putative nucleoporins and a myosin-like protein with homologues NUP84, NUP85, NUP120 and MLP1, respectively, that are not required for viability in Saccharomyces cerevisiae, suggesting that their gene products perform critical functions in Sz. pombe. On the basis of combined drug sensitivity assays and genetic analysis we have identified five non-essential null mutants that were hypersensitive to the microtubule depolymerizing drug thiabendazole (TBZ) and exhibited a cut phenotype upon TBZ treatment, suggesting possible involvement in microtubule function. Three of the corresponding ORFs, SPCC18B5.07c, nup40 and SPAC1805.04, encode putative nucleoporins with low similarity to the S. cerevisiae nucleoporins NUP2p, NUP53p and NUP133p, respectively. Further genetic analysis revealed that one of the nucleoporin genes, nup40, and another gene, SPCC1322.06, encoding a putative importin-β/Cse1p superfamily protein may have a spindle checkpoint function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.