Exploration and development drilling in offshore China is extending to Paleogene formations that are characterized by low-resistivity-contrast and low-permeability rocks. These formations have become a focus for increasing reserves and production. During exploration activities, these low-resistivity, low-formation-contrast formations have been critical and challenging for formation evaluation because the geological structure and lithology are more complex than in previously discovered fields. Differentiating hydrocarbon from water using petrophysical interpretation has a large uncertainty in these formations. Confirming the fluid type using conventional formation testing technology has been extremely challenging because the produced fluid is mainly mud filtrate, which is no use for fluid confirmation. A new-generation intelligent wireline formation testing platform consisting of a focused radial probe inlet and a dual flowline with dual downhole pumps to enable flexible focused sampling was applied to three appraisal wells in offshore China. Given the larger flow area of the probe system, flow tests could be conducted in as low as 0.004-md/cP mobility zones (the tightest on record), and fluid identification could be performed in-situ while the fluid flowed through a group of sensors. Previous formation testing in these formations had been challenged because the water-based mud system caused suspension of solid particles (debris and mud solids). Filter and standoff accessories available with the intelligent wireline formation platform enabled designing a fit-for-purpose approach to overcome this challenge in a short time. This dedicated design resulted in increased efficiency in water sampling compared to previous testing done by the operator. Clean water resistivity, measured in situ, can now be applied to this new exploration block to recalculate the water saturation for reserve estimation. Whereas previous gas-water transition zone sampling was challenging because high water-based mud filtrate fractions masked the presence of formation water and formation hydrocarbon, the radial probe, combined with state-of-the-art resistivity measurements, allowed identification of gas and the measurement of formation water resistivity in a multiphase flow environment. The formation testing of these low-resistivity-contrast and low-permeability formations enabled acquisition of a 2% contaminated formation water sample in 140 minutes with formation mobility of 1 md/cP. The gas-water zone was confirmed from a dual flowline resistivity measurement and a hydrocarbon show in mobility of 1.4 md/cP.
Exploration and development drilling in offshore China is extending to Paleogene formations that are characterized by low-resistivity-contrast and low-permeability rocks. These formations have become a focus for increasing reserves and production. During exploration activities, these low-resistivity, low-formation-contrast formations have been critical and challenging for formation evaluation because the geological structure and lithology are more complex than in previously discovered fields. Differentiating hydrocarbon from water using petrophysical interpretation has a large uncertainty in these formations. Confirming the fluid type using conventional formation testing technology has been extremely challenging because the produced fluid is mainly mud filtrate, which is of no use for fluid confirmation. The dual-flowline architecture of the intelligent formation testing platform (IFT) is designed to systematically address shortcomings of legacy technology, enabling focused sampling in the tightest conventional formations. Specialized digital planning of the numerical flow models by adding a brine tracking facility and enumeration initialization was performed to (a) compare and benchmark the cleanup performance of conventional radial 3D probe and new focus radial probe; (b) simulate multiple scenarios including hydrocarbon-water transition to understand the salinity changes while pumping in various water saturation circumstance and optimize operational planning by quantifying cleanup time uncertainties even in two-phase fluid reservoir; and (c) history match the sampling drawdown, flow rate, and salinity change with actual sampling data and provide real-time answers to help accelerate the decision-making cycle. This dedicated design resulted in increased efficiency in water sampling compared to previous testing done by the operator. Whereas previous gas-water transition zone sampling was challenging because high water-based mud filtrate fractions masked the presence of formation water and formation hydrocarbon, the focused radial probe, combined with state-of-the-art resistivity measurements and prejob modeling of salinity change, allowed identification of gas and the measurement of formation water resistivity in a multiphase flow environment. The formation testing of these low-resistivity-contrast and low-permeability formations enabled acquisition of a 2% contaminated formation water sample in 140 minutes with formation mobility of 1 md/cP. The gas-water zone was confirmed from a dual-flowline resistivity measurement and a hydrocarbon show in mobility of 1.4 md/cP. The intelligent wireline formation testing platform enabled high-performance and efficient collection and identification of formation water and gas in a low-mobility low-resistivity-low-contrast formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.