Significant progress has been made in the study of optical coherence tomography (OCT) -a non-invasive, high resolution, and in vivo diagnostic method for medical imaging applications. In this paper, the principles of noise analyses for OCT systems have been described.Comparisons are made of signal-to-noise ratios for both balanced and unbalanced detection schemes under the ideal no-stray light situation as well as the non-ideal situation where residual reflections and scatterings are presented. Numerical examples of noise calculation accompanied by detailed comparison of the main characteristics of both time-domain and frequency-domain OCT systems are also presented. It is shown that a larger dynamic range can be achieved for a Fourier-domain OCT system even under the circumstances of high-speed image acquisition. The main results presented in this paper should be useful for the development of high performance OCT systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.