Host-pathogen interactions are the result of the continuously evolving dynamics of the genomic interphases between pathogens and the host plants. Alternaria brown spot (ABS) caused by the pathogen Alternaria alternata is a serious threat to tangerine production. Although recent studies have made significant advances in the characterization of A. alternata virulence factors, a gap exists in the regulation of virulent genes throughout the course of A. alternata infection on host plants. To gain a better understanding of the dynamic defense transcriptome in Alternaria alternata during Infection, we performed a comparative transcriptome approach. After inoculation on citrus, we found that 2142, 1964, 2359 genes were up-regulated, and 1948, 1434, 1996 genes were down-regulated at 12 hours-post-inoculation (hpi), 24 hpi and 48 hpi, respectively. Among these genes, 1333 genes were up-regulated at three time points, and 1054 genes were down-regulated, indicating that most of the differentially expressed genes at the early stage of infection tended to remain differentially expressed at the later stage of infection. In addition to the genes that are known to be part of the infection network in plant-pathogen interactions, many novel genes related to plant-pathogen interaction were identified. Interestingly, our results indicate that A. alternata is able to rapidly alter its gene expression pattern during infection process, which is vital for the successful colonization of the pathogen. Moreover, this rapid alteration of gene expression is likely to be an adaptive mechanism, enabling the pathogen to quickly respond to any changes in the environment and adapt to the host’s defense system. This ability to modify gene expression quickly in the face of environmental changes could play a critical role in the successful establishment of infection. RT-qPCR analysis confirmed that the expression pattern of nine randomly selected genes from the peroxisome pathway were consistent with the RNA-seq data. Our study provided a comprehensive study of the expression of genes during A. alternata infection of citrus, which may facilitate the understanding of host-plant interactions in A. alternata.
Numerical analysis of the optimal supporting time and long-term stability index of the surrounding rocks in the underground plant of Xiangjiaba hydro-power station was carried out based on the rheological theory. Firstly, the mechanical parameters of each rock group were identified from the experimental data; secondly, the rheological calculation and analysis for the cavern in stepped excavation without supporting were made; finally, the optimal time for supporting at the characteristic point in a typical section was obtained while the creep rate and displacement after each excavation step has satisfied the criterion of the optimal supporting time. Excavation was repeated when the optimal time for supporting was identified, and the long-term stability creep time and the maximum creep deformation of the characteristic point were determined in accordance with the criterion of long-term stability index. It is shown that the optimal supporting time of the characteristic point in the underground plant of Xiangjiaba hydro-power station is 5−8 d, the long-term stability time of the typical section is 126 d, and the corresponding largest creep deformation is 24.30 mm. While the cavern is supported, the cavern deformation is significantly reduced and the stress states of the surrounding rock masses are remarkably improved.
In an attempt to study the acoustic emission (AE) characteristics of granite specimens (25°C~600°C) during high-temperature deformation, the uniaxial compression and general triaxial compression tests were carried out. The AE signals were collected simultaneously, following which the AE signals were processed to predict rock failure. The study makes some interesting conclusions. In the uniaxial compression test, AE activity is found to be more active during the postpeak stress phase. In the triaxial compression test, AE activity is found to be more active during the postpeak stress phase. The AE energy and the cumulative energy under uniaxial compression are much larger than the triaxial compression at the failure moment of the granite specimen after the same heat treatment. As the heat-treatment temperature increases, the peak AE energy decreases, but the cumulative AE energy decreases first and then increases. The failure of granite was predicted by AE signal processing, and good prediction results were obtained for different experimental conditions and the different preset failure time tf. The time at which the forecast point appears is usually close to the time at which the rock specimen enters the plastic deformation phase. The value of the parameter tf impacts the curve shape and prediction duration without affecting the occurrence of the forecast point. In addition, the shape of curve changes stepwise as the tf changes.
The propagation of stress waves in filled jointed rocks involves two important influencing factors: transmission-reflection phenomena and energy attenuation. In this paper, the split Hopkinson pressure bar (SHPB) test is used to shock the filled rock with joint angles of 0, 30, and 45° and the thickness of 4 mm and 10 mm, respectively, in three different velocities. The wave curves of the incident wave, reflected wave, and transmission are obtained. The effects of the filling angle and joint thickness on wave propagation are analyzed. Based on the propagation characteristics of stress waves in joints, the stress expression of oblique incident stress waves propagating in filling joints is derived, and the energy coefficient of transmission and reflection is calculated. The results show that the propagation of stress wave in filling joints is related to the impact rate. The larger the impact rate is, the larger the maximum voltage amplitude of the three waves is. And the increasing amplitude of the incident and reflected waves is larger than the transmitted wave; the greater the impact velocity is, the smaller the stress-strain curve gap of the three dip joints is, and the fracture strength of the specimen decreases with the increase of the joint dip angle. The larger the joint dip angle is, the smaller the deformation of the rock-like specimen is. The change of the transmission coefficient is related to the joint angle, and the larger joint angle weakens the influence of the joint width on the transmission of the transmitted wave; under each impact velocity, the theoretical and experimental stress peaks are approximately the same, and the transmission coefficient maintains a good consistency with the oblique incident angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.