Cyadox is a novel quinoxaline-1,4-dioxide with the potential for development as a substitute for the banned veterinary drugs carbadox and olaquindox. In this paper, using pigs as the test subjects, the metabolic mechanism of cyadox N-oxide reduction in liver is demonstrated. There exist two metabolic mechanisms for the N-oxide reduction of cyadox, the enzymatic and non-enzymatic routes. It is found that cyadox can be enzymatically reduced to 4-cyadox monoxide and 1-cyadox monoxide; this process is catalyzed by aldehyde oxidase and xanthine oxidase in the cytosol and by cytochrome b5 reductase in the microsomes. On the other hand, cyadox is only reduced to 4-cyadox monoxide in the non-enzymatic reduction mediated by heme groups of catalase and cytochrome P450s. We supposed that, owing to the position of the side chain in cyadox, the 1-N-oxide and 4-N-oxide bonds in the quinoxaline ring had different biochemical activities, which caused cyadox to be shunted to the distinct metabolic mechanisms. Additionally, this research gives the first evidence of FAD- and NAD(P)H-dependent non-enzymatic catalase reduction of a heterocyclic N-oxide. The research provides a basic foundation for the formulation of safety controls for animal products and the properties and metabolism of heterocyclic N-oxides.
T-2 toxin is a mycotoxin that is toxic to plants, animals, and humans. However, its molecular mechanism remains unclear, especially in chickens. In this study, using 2D electrophoresis with MALDI-TOF/TOF-MS, 53 proteins were identified as up- or downregulated by T-2 toxin in chicken primary hepatocytes. Functional network analysis by ingenuity pathway analysis showed that the top network altered by T-2 toxin is associated with neurological disease, cancer, organismal injury, and abnormalities. Most of the identified proteins were associated with one of eight functional classes, including cell redox homeostasis, transcriptional or translational regulation, cell cycle or cell proliferation, stress response, lipid metabolism, transport, carbohydrate metabolism, and protein degradation. Subcellular location categorization showed that the identified proteins were predominantly located in the mitochondrion (34%) and interestingly, the expression of all the identified mitochondrial proteins was increased. Further cellular analysis showed that T-2 toxin was able to induce the ROS accumulation and could lead to an increase in mitochondrial mass and adenosine 5'-triphosphate content, which indicated that oxidative stress and mitochondrial enhancement occurred in T-2 toxin-treated cells. Overall, these results characterize the global proteomic response of chicken primary hepatocytes to T-2 toxin, which may lead to a better understanding of the molecular mechanisms underlying its toxicity.
Quinoxaline-1,4-dioxides (QdNOs) are a class of quinoxaline derivatives that are widely used in humans or animals as drugs or feed additives. However, the metabolic mechanism, especially the involved enzymes, has not been reported in detail. In this study, the N-oxide reduction enzyme, porcine aldehyde oxidase SsAOX1 was identified and characterized. The SsAOX1 gene was cloned from pig liver through reverse-transcription polymerase chain reaction using degenerate primers, which encode a 147-kDa protein with typical aldehyde oxidase motifs, two [2Fe-2S] centers, a flavin adenine dinucleotide (FAD) binding domain, and a molybdenum cofactor domain. After heterologous expression in a prokaryote, purified SsAOX1 formed a functional homodimer under native conditions. Importantly, the SsAOX1 catalyzed the N-oxide reduction at the N1 position of three representative QdNOs (quinocetone, mequindox, and cyadox), which are commonly used as animal feed additives. SsAOX1 has the highest activity toward quinocetone, followed by mequindox and cyadox, with kcat/K m values of 1.94 6 0.04, 1.27 6 0.15, and 0.43 6 0.09 minute 21 mM 21, respectively. However, SsAOX1 has the lowest substrate affinity for quinocetone, followed by the cyadox and mequindox, with K m values of 4.36 6 0.56, 3.16 6 0.48, and 2.96 6 0.51 mM, respectively. In addition, using site-directed mutagenesis, we found that substitution of glycine 1019 with threonine endows SsAOX1 with N-oxide reductive activity at the N4 position. The goal of this study was to identify and characterize the N-oxide reduction enzyme for a class of veterinary drugs, QdNOs, which will aid in the elucidation of the metabolic pathways of QdNOs and will provide a theoretical basis for their administration and new veterinary drug design.
ABSTRACT:Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides derivative, which is widely used as a veterinary drug and animal feed additive. However, the metabolic mechanism of MEQ is rarely reported. The N-oxide reduction mechanism of MEQ was reported in our previous work. In this article, the toxicity and the reduction of the carbonyl of MEQ were studied. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays demonstrated that the carbonyl-reduced MEQ, 2-isoethanol MEQ was much less toxic than MEQ. High-performance liquid chromatography analysis showed that the cytosol extracts of chicken and pig livers were able to reduce MEQ to 2-isoethanol MEQ and the reaction was NADPH-dependent. Further study via enzymeinhibitory experiment revealed that carbonyl reductase 1 (CBR1) participated in this metabolism. The enzyme activity analysis showed that both chicken CBR1 (cCBR1) and porcine CBR1 (pCBR1) were capable of catalyzing the carbonyl reduction of MEQ and its N-oxide reductive metabolite, 1-deoxymequindox. By comparison of the kinetic constants, we observed that the activity of cCBR1 was higher than pCBR1 to MEQ and the standard substrate of CBR1, menadione. On the other hand, both CBR1s exhibited higher activity to 1-deoxymequindox than MEQ. Mutation analysis suggested that the difference of amino acid at position 141/142 may be one possible reason that caused the activity difference between cCBR1 and pCBR1. Thus far, CBR1 was first reported to participate in the carbonyl reduction of MEQ. Our results will be helpful to recognize the metabolic pathways of quinoxaline drugs deeply and to provide a theoretical basis for controlling the negative effects of these drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.