Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.
Strain engineering has emerged as a powerful tool to create new states of known materials with excellent performance. Here, we show a general and practically realizable method via interphase strain to obtain a new super tetragonality providing giant polarization. This method is illustrated for the case of PbTiO3, where we report a c/a ratio of up to 1.238 in epitaxial composite thin films, compared to that of 1.065 in bulk PbTiO3. These thin films of super-tetragonal structure possess an unprecedented giant remanent polarization, 236.3 μC/cm 2 , which is almost twice the value of all known ferroelectrics. The tetragonal phase is stable up to 725 °C as compared to the bulk's transition temperature of 490 °C. The present interphase strain approach could provide a new avenue to enhance the physical properties of materials with respect to their multiferroic, photonic, superconductor, and energy-harvesting behavior.
The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), αl = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3̅m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.
Negative thermal expansion (NTE), whereby lattices contract upon heating, is of considerable interest for its wide applications in many fields. Molecular materials have been widely investigated as catalysts, sensors, etc., which usually endure temperature vibration. NTE can become a substantial means for controlling the coefficients of thermal expansion. Molecular materials possess plentiful structures and can be easily decorated, making them ideal platforms for thermal expansion modification. In this feature article, we provide an overview of the recent developments in utilizing NTE in molecular materials and summarize some mechanisms leading to NTE. The discussion of NTE in molecular materials concerns many factors, including transverse vibration, geometric flexibility, host-guest interactions, spin crossover, molecular packing rearrangement and molecular conformational changes.
The structures of (1−x)PbTiO3–xBiFeO3 (x=0.3 and 0.6) were investigated by means of the neutron powder diffraction. A splitting shift between Fe and Ti atoms was found along the c axis in 0.7PbTiO3–0.3BiFeO3; however, this splitting does not appear in 0.4PbTiO3–0.6BiFeO3. The tetragonal phase of PbTiO3–BiFeO3 exhibits a large spontaneous polarization. The negative thermal expansion of PbTiO3 is significantly enhanced in a wide temperature range by the BiFeO3 substitution. The average bulk thermal expansion coefficient of 0.4PbTiO3–0.6BiFeO3 is a¯v=−3.92×10−5°C−1, which is much strong in the known negative thermal expansion oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.