The aim of this study is to acquire information for future breeding efforts aimed at improving fruit quality via effects on aroma by comparing the diversity of Chinese local peach cultivars across 10 samples of three varieties (honey peach, yellow peach, and flat peach). The volatile components of peach fruits were analyzed and identified by gas chromatography–ion mobility spectrometry (GC-IMS) combined with gas chromatography–mass spectrometry (GC-MS), and the main flavor components of peach fruit were determined by relative odor activity value (ROAV) and principal component analysis (PCA). A total number of 57 volatile components were detected by GC-IMS, including eight aldehydes, nine alcohols, eight ketones, 22 esters, two acids, two phenols, two pyrazines, one thiophene, one benzene, and two furans. The proportion of esters was up to 38.6%. A total of 88 volatile components were detected by GC-MS, among which 40 were key aroma compounds, with an ROAV ≥ 1. The analysis results showed that alcohols, ketones, esters, and aldehydes contributed the most to the aroma of peach fruit. PCA demonstrated that (E,E)-2, 6-non-adienal, γ-decalactone, β-ionone, and hexyl hexanoate were the key contributors to the fruit aroma. A reference for future directional cultivation and breeding could be provided by this study through evaluating the aroma quality of the peach at the cultivar level. The possible reasonable application of these peach fruits pulp will be guided through these research.
Phyllosphere microorganisms are closely linked to plant health. This study investigated the effect of ozonated water, mancozeb, and thiophanate-methyl on phyllosphere microorganisms in strawberry plants of the “Hongyan” variety. Sequencing analysis of the phyllosphere bacterial and fungal communities was performed using 16S rRNA gene fragment and ITS1 region high-throughput sequencing after spraying ozonated water, mancozeb, thiophanate-methyl, and clear water. Proteobacteria, Actinobacteria, and Firmicutes were the dominant bacterial phyla in strawberry. The relative abundance of Proteobacteria (82.71%) was higher in the ozonated water treatment group than in the other treatment groups, while the relative abundance of Actinobacteria (9.38%) was lower than in the other treatment groups. The strawberry phyllosphere fungal communities were mainly found in the phyla Basidiomycota and Ascomycota. The relative abundance of Basidiomycota was highest in the ozonated water treatment group (81.13%), followed by the mancozeb treatment group (76.01%), while the CK group only had an abundance of 43.38%. The relative abundance of Ascomycota was lowest in the ozonated water treatment group (17.98%), 23.12% in the mancozeb treatment group, 43.39% in the thiophanate-methyl treatment group, and 55.47% in the CK group. Pseudomonas, Halomonas, and Nesterenkonia were the dominant bacterial genera on strawberry surfaces, while Moesziomyces, Aspergillus, and Dirkmeia were the dominant fungal genera. Ozonated water was able to significantly increase the richness of bacteria and fungi and decrease fungal diversity. However, bacterial diversity was not significantly altered. Ozonated water effectively reduced the relative abundance of harmful fungi, such as Aspergillus, and Penicillium, and enriched beneficial bacteria, such as Pseudomonas and Actinomycetospora, more effectively than mancozeb and thiophanate-methyl. The results of the study show that ozonated water has potential as a biocide and may be able to replace traditional agents in the future to reduce environmental pollution.
Anthocyanins are important secondary metabolites in fruits, and anthocyanin accumulation in the flesh of peach exhibits a spatial pattern, but the relevant mechanism is still unknown. In this study, the yellow-fleshed peach, cv. ‘Jinxiu’, with anthocyanin accumulation in the mesocarp around the stone was used as the experimental material. Red flesh (RF) and yellow flesh (YF) were sampled separately for flavonoid metabolite (mainly anthocyanins), plant hormone, and transcriptome analyses. The results showed that the red coloration in the mesocarp was due to the accumulation of cyanidin-3-O-glucoside, with an up-regulation of anthocyanin biosynthetic genes (F3H, F3′H, DFR, and ANS), transportation gene GST, and regulatory genes (MYB10.1 and bHLH3). Eleven ERFs, nine WRKYs, and eight NACs were also defined as the candidate regulators of anthocyanin biosynthesis in peach via RNA-seq. Auxin, cytokinin, abscisic acid (ABA), salicylic acid (SA), and 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor) were enriched in the peach flesh, with auxin, cytokinin, ACC, and SA being highly accumulated in the RF, but ABA was mainly distributed in the YF. The activators and repressors in the auxin and cytokinin signaling transduction pathways were mostly up-regulated and down-regulated, respectively. Our results provide new insights into the regulation of spatial accumulation pattern of anthocyanins in peach flesh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.