Background:Circular RNAs (circRNAs) are key regulators that take part in the carcinogenesis and development of breast cancer. The current study aimed to identify the expression of and explored the function of circRNA-0001283 in breast cancer. Material/Methods:Breast cancer tissue samples were tested using high-throughput sequencing to identify the levels of relative genes; and proteins were addressed by using quantitative real-time polymerase chain reaction (qRT-PCR) and western-blot. Cell ability and cell apoptosis were investigated by Cell Counting Kit-8 (CCK-8) and flow cytometry. Invasion was detected by Transwell invasion assay. The identification of target genes was analyzed by dual-luciferase reporter assay. Result:Downregulation of circRNA-0001283 expression was observed in breast cancer tissue samples. Ectopic expression of circRNA-0001283 remarkably suppressed cell viability and invasion, and induced apoptosis in breast cancer cells. Furthermore, circRNA-0001283 bound to miR-187 and decreased the expression of miR-187, which resulted in inhibition in cell growth and invasion. Finally, we showed that circRNA-0001283 positively regulated HIPK3 expression by sponging miR-187. Conclusions:The results reveal a new functional circRNA-0001283 in breast cancer and may provide targets for developing novel therapeutic strategies for breast cancer.
Pancreatic cancer remains a deadly solid tumor with worst survival, and a better understanding of the mechanisms of carcinogenesis of pancreatic cancer is critical to promote the survival of patients with pancreatic cancer. qPCR and western blot assay were used to determine the expression of SPRR3 in pancreatic cancer. Anchorage-independent growth ability, BrdU labeling, Transwell assay, and in vivo experiment were used to examine the functions of SPRR3 in aggressiveness of pancreatic cancer. Luciferase reporter assay, nucleoplasmic-separation technique, qPCR, and western blot assay were used to investigate the mechanism of SPRR3 regulating aggressiveness of pancreatic cancer. Our results showed that SPRR3 was significantly increased in pancreatic cancer, which resulted in poor survival for patients with pancreatic cancer. Further analysis showed that overexpression of SPRR3 contributed to anchorage-independent growth ability, growth rate, and invasion ability of pancreatic cancer cells. While, knockdown of SPRR3 showed the reverse results. Mechanistically, overexpression of SPRR3 can promote the transcription of NF-κB pathway, nuclear accumulation of p65, and mRNA levels of NF-κB pathway downstream genes. But, knockdown of SPRR3 induced the reverse results. The above findings clarified the important roles of SPRR3 in the progression of pancreatic cancer through NF-κB pathway. And targeting SPRR3 might be an effective strategy to therapy pancreatic cancer.
Hepatocellular carcinoma (HCC) is a lethal malignancy whereas the molecular mechanisms remain poorly understood. Recently, long noncoding RNAs (lncRNA) have been shown to regulate HCC progression. However, the involved lncRNAs remain to be fully explored. Here, we showed the expression pattern and biological function of a recently identified lncRNA, LINC02273, in HCC. LINC02273 played a critical role in HCC progression via stabilizing β-catenin. Knockdown of LINC02237 remarkably inhibited the proliferation, stemness, migration, and invasion abilities, whereas it increased the apoptosis of HCC cells. Overall, we characterized the functions of LINC02273 in HCC and its potential as a novel HCC targeting candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.