NG2 (nerve/glia antigen-2) is a type I transmembrane glycoprotein and also known as chondroitin sulfate proteoglycan 4. In the parenchyma of the central nervous system, NG2-expressing (NG2(+) ) cells have been identified as a novel type of glia with a strong potential to generate oligodendrocytes (OLs) in the developing white matter. However, the differentiation potential of NG2 glia remained controversial, largely attributable to shortcomings of transgenic mouse models used for fate mapping. To minimize these restrictions and to more faithfully mimic the endogenous NG2 expression in vivo, we generated a mouse line in which the open reading frame of the tamoxifen-inducible form of the Cre DNA recombinase (CreERT2) was inserted into the NG2 locus by homologous recombination. Results from this novel mouse line demonstrate that at different developmental stages of the brain, NG2(+) cells either stayed as NG2 glia or differentiated into OLs during the whole life span. Interestingly, when Cre activity was induced at embryonic stages, a significant number of reporter(+) astrocytes could be detected in the gray matter after birth. However, in other brain regions, such as olfactory bulb, brain stem, and cerebellum, all of the NG2 glia was restricted to the OL lineage. In addition, tamoxifen-sensitive and NG2 gene locus-dependent gene recombination could be detected in a small, but persistent population of cortical NeuN(+) neurons starting from the second postnatal week.
Cortical neural circuits are complex but very precise networks of balanced excitation and inhibition. Yet, the molecular and cellular mechanisms that form the balance are just beginning to emerge. Here, using conditional γ-aminobutyric acid receptor B1- deficient mice we identify a γ-aminobutyric acid/tumor necrosis factor superfamily member 12-mediated bidirectional communication pathway between parvalbumin-positive fast spiking interneurons and oligodendrocyte precursor cells that determines the density and function of interneurons in the developing medial prefrontal cortex. Interruption of the GABAergic signaling to oligodendrocyte precursor cells results in reduced myelination and hypoactivity of interneurons, strong changes of cortical network activities and impaired social cognitive behavior. In conclusion, glial transmitter receptors are pivotal elements in finetuning distinct brain functions.
NG2 is a type I transmembrane glycoprotein known as chondroitin sulfate proteoglycan 4 (CSPG4). In the healthy central nervous system, NG2 is exclusively expressed by oligodendrocyte progenitor cells and by vasculature pericytes. A large body of immunohistochemical studies showed that under pathological conditions such as acute brain injuries and experimental autoimmune encephalomyelitis (EAE), a number of activated microglia were NG2 immuno-positive, suggesting NG2 expression in these cells. Alternative explanations for the microglial NG2 labeling consider the biochemical properties of NG2 or the phagocytic activity of activated microglia. Reportedly, the transmembrane NG2 proteoglycan can be cleaved by a variety of proteases to deposit the NG2 ectodomain into the extracellular matrix. The ectodomain, however, could also stick to the microglial surface. Since microglia are phagocytic cells engulfing debris of dying cells, it is difficult to identify a genuine expression of NG2. Recent studies showing (1) pericytes giving rise to microglial after stroke, and (2) immune cells of NG2-EYFP knock-in mice lacking NG2 expression in an EAE model generated doubts for the de novo expression of NG2 in microglia after acute brain injuries. In the current study, we took advantage of three knock-in mouse lines (NG2-CreERT2, CX 3 CR 1 -EGFP and NG2-EYFP) to study NG2 expression indicated by transgenic fluorescent proteins in microglia after tMCAO (transient middle cerebral artery occlusion) or cortical stab wound injury (SWI). We provide strong evidence that NG2-expressing cells, including OPCs and pericytes, did not differentiate into microglia after acute brain injuries, whereas activated microglia did express NG2 in a disease-dependent manner. A subset of microglia continuously activated the NG2 gene at least within the first week after tMCAO, whereas within 3 days after SWI a limited number of microglia at the lesion site transiently expressed NG2. Immunohistochemical studies demonstrated that these microglia with NG2 gene activity also synthesized the NG2 protein, suggesting activated microglia as an additional source of the NG2 proteoglycan after acute brain injuries. Electronic supplementary material The online version of this article (10.1186/s40478-020-01016-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.