In order to solve the problem where the amount of screw fertilizer distributor can only be adjusted by rotating speed and poor fertilization uniformity at low rotational speeds, a blocking wheel-type screw fertilizer distributor was designed. Single factor and L9(34) orthogonal simulation tests based on EDEM software were carried out to optimize the distributor variables at a speed of 20 r/min. The bench verification test was built under the same conditions as the simulation tests to verify the results of the simulation. Finally, the bench performance tests were carried out to evaluate distributor performance. The results of simulation tests revealed that the minimum coefficient of variation of fertilization uniformity (CVFU) was 19.27%, with the structural parameter combination of the inner diameter (17 mm), pitch (45 mm), outlet distance (40 mm), and number of screw heads (1). The verification test results showed that the changing trend and values of the CVFU were almost the same as the simulation tests. The results of the performance test revealed that when the opening width of the blocking wheel was 10–30 mm and the rotation speed was 20–60 r/min, the amount of fertilizer per lap (FAPL) was in the range of 27.74–38.15 g/r; the maximum CVFU and the coefficient of variation of fertilization stability (CVFS) were 29.43% and 2.18%, respectively, which met the requirements of the industry standard. This research provides a good reference for optimizing the screw fertilizer distribution and for researchers in the field of precision fertilization.
To determine the distribution pattern of the threshing and separating device, the simulation experiment on the distribution pattern of our self-designed drum-shape bar-tooth longitudinal axial flow threshing and separating device was carried out with the help of the EDEM software, by which the axial and radial distribution curve of the threshed mixture along the cylinder was acquired. The three-dimensional distribution of the mass of the threshed mixture was drawn by using the Matlab software, and the bench test was carried out on the self-built small-scale longitudinal axial flow threshing cylinder performance test platform, which was consistent with the simulation conditions. The results showed that the axial and radial distribution of the threshed mixture was uneven, and the axial distribution of the threshed mixture decreased gradually, which was mainly distributed in the first third section of the cylinder. The distribution of the threshed mixture along the radial area of the cylinder was gradually decreasing at first and then increasing, i.e., the total mass of the threshed mixture on the left and right sides was higher than that of the middle area, which was basically consistent with the simulation results. The research can provide reference for the optimization of structural parameters of threshing and separating device and cleaning system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.