Machine learning methods are widely used in autism spectrum disorder (ASD) diagnosis. Due to the lack of labelled ASD data, multisite data are often pooled together to expand the sample size. However, the heterogeneity that exists among different sites leads to the degeneration of machine learning models. Herein, the three-way decision theory was introduced into unsupervised domain adaptation in the first time, and applied to optimize the pseudolabel of the target domain/site from functional magnetic resonance imaging (fMRI) features related to ASD patients. The experimental results using multisite fMRI data show that our method not only narrows the gap of the sample distribution among domains but is also superior to the state-of-the-art domain adaptation methods in ASD recognition. Specifically, the ASD recognition accuracy of the proposed method is improved on all the six tasks, by 70.80%, 75.41%, 69.91%, 72.13%, 71.01% and 68.85%, respectively, compared with the existing methods.
From the perspective of the degrees of classification error, we proposed graded rough intuitionistic fuzzy sets as the extension of classic rough intuitionistic fuzzy sets. Firstly, combining dominance relation of graded rough sets with dominance relation in intuitionistic fuzzy ordered information systems, we designed type-I dominance relation and type-II dominance relation. Type-I dominance relation reduces the errors caused by single theory and improves the precision of ordering. Type-II dominance relation decreases the limitation of ordering by single theory. After that, we proposed graded rough intuitionistic fuzzy sets based on type-I dominance relation and type-II dominance relation. Furthermore, from the viewpoint of multi-granulation, we further established multi-granulation graded rough intuitionistic fuzzy sets models based on type-I dominance relation and type-II dominance relation. Meanwhile, some properties of these models were discussed. Finally, the validity of these models was verified by an algorithm and some relative examples.
Three-way decisions, as a general model for uncertain information processing and decisions, mainly utilize the threshold generated by the decision cost matrix to determine the decision category of the object. However, the determination of the threshold is usually accompanied by varying degrees of subjectivity. In addition, the potential symmetrical relationship between the advantages and disadvantages of the decision cost is also a problem worthy of attention. In this study, we propose a novel intuitionistic fuzzy three-way decision (IFTWD) model based on a three-way granular computing method. First, we present the calculation methods for the possibility of membership state and non-membership state, as well as prove the related properties. Furthermore, we investigate the object information granules, i.e., the fine-grained, medium-grained, and coarse-grained objects, by combining the state probability distribution and probability distribution. Then, for decision and evaluation issues, we define the superiority-compatibility relation and inferiority-compatibility relation for IFTWD model construction. In addition, we use the superiority degree and inferiority degree instead of the original thresholds and design a new method for evaluating decision cost. Finally, we focus on the algorithm research of the proposed model and present an empirical study of agricultural ecological investment in Hubei Province to demonstrate the effectiveness of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.