We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solutionphase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately two orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active towards multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY−1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the Nterminal side and one or more acidic residues on the C-terminal side of pY, but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY−1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity. † This work was supported by grants from the National Institutes of Health (CA132855, GM062820, CA49132, and CA49152). L.R.was supported by a predoctoral fellowship from China Scholarship Council affiliated with the Ministry of Education of P. R. China. T.M.M. was supported by a predoctoral fellowship from the NIH Chemistry-Biology Interface Training Program (T32GM08512). * To whom correspondence should be addressed: Department of Chemistry, The Ohio State University, 100 West 18 th Avenue, Columbus, OH 43210. Telephone: (614) Protein-tyrosine phosphatases (PTPs) are a large family of enzymes (the human genome encodes 107 PTPs) that catalyze the hydrolysis of phosphotyrosine (pY) in proteins to tyrosine and inorganic phosphate (1). Once thought to be promiscuous "housekeeping" enzymes, PTPs are now known to be actively involved in cell signaling and have been described as having "exquisite substrate specificity" in vivo. However, in contrast to their well-established catalytic mechanism, their physiological substrates and functions remain poorly defined. Substantial evidence suggests that the substrate specificity of PTPs is controlled by both the intrinsic sequence specificity of the catalytic domain and the presence of targeting domains, which dire...
TULA-1 (UBASH3A/STS-2) and TULA-2 (p70/STS-1) represent a novel class of protein-tyrosine phosphatases. Previous studies suggest that TULA-2 is sequence-selective toward phosphotyrosyl (Tyr(P)) peptides. In this work the substrate specificity of TULA-1 and -2 was systematically evaluated by screening a combinatorial Tyr(P) peptide library. Although TULA-1 showed no detectable activity toward any of the Tyr(P) peptides in the library, TULA-2 recognizes two distinct classes of Tyr(P) substrates. On the N-terminal side of Tyr(P), the class I substrates contain a proline at the Tyr(P)؊1 position, a hydrophilic residue at the Tyr(P)؊2 position, and aromatic hydrophobic residues at positions Tyr(P)؊3 and beyond. The class II substrates typically contain two or more acidic residues, especially at Tyr(P)؊1 to Tyr(P)؊3 positions, and aromatic hydrophobic residues at other positions. At the C-terminal side of Tyr(P), TULA-2 generally prefers acidic and aromatic residues. The library screening results were confirmed by kinetic analysis of representative peptides selected from the library as well as Tyr(P) peptides derived from various Tyr(P) proteins. TULA-2 is highly active toward peptides corresponding to the Tyr(P)-323 and Tyr(P)-352 sites of Syk, and the Tyr(P)-397 site of focal adhesion kinase and has lower activity toward other Tyr(P) sites in these proteins. In glycoprotein VI-stimulated platelets, knock-out of the TULA-2 gene significantly increased the phosphorylation level of Syk at Tyr-323 and Tyr-352 sites and to a lesser degree at the Tyr-525/526 sites. These results suggest that Syk is a bona fide TULA-2 substrate in platelets.
On-bead screening of one-bead-one-compound (OBOC) libraries provides a powerful method for the rapid identification of active compounds against molecular or cellular targets. However, on-bead screening is susceptible to interference from nonspecific binding, which results in biased screening data and false positives. In this work, we have found that a major source of nonspecific binding is derived from the high ligand loading on the library beads, which permits a macromolecular target (e.g., a protein) to simultaneously interact with multiple ligands on the bead surface. To circumvent this problem, we have synthesized a phosphotyrosyl (pY)-containing peptide library on spatially segregated TentaGel microbeads, which feature a 10-fold reduced peptide loading on the bead surface but a normal peptide loading in the bead interior. The library was screened against a panel of 10 Src homology 2 (SH2) domains including those of Csk and Fyn kinases and adaptor protein SLAP, and the specific recognition motif(s) was successfully identified for each of the domains. In contrast, when the SH2 domains were screened against a control library that contained unaltered (high) ligand loading at the bead surface, six of them exhibited varying degrees of sequence biases, ranging from minor perturbation in the relative abundance of different sequences to the exclusive selection of false positive sequences that have no measurable affinity to the target protein. These results indicate that reduction of the ligand loading on the bead surface represents a simple, effective strategy to largely eliminate the interference from nonspecific binding, while preserving sufficient amounts of materials in the bead interior for compound identification. This finding should further expand the utility of OBOC libraries in biomedical research.
Parkinson's disease (PD) is a neurodegenerative disorder with dysfunction in cortices as well as white matter (WM) tracts. While the changes to WM structure have been extensively investigated in PD, the nature of the functional changes to WM remains unknown. In this study, the regional activity and functional connectivity of WM were compared between PD patients (n = 57) and matched healthy controls (n = 52), based on multimodel magnetic resonance imaging data sets. By tract‐based spatial statistical analyses of regional activity, patients showed decreased structural‐functional coupling in the left corticospinal tract compared to controls. This tract also displayed abnormally increased functional connectivity within the left post‐central gyrus and left putamen in PD patients. At the network level, the WM functional network showed small‐worldness in both controls and PD patients, yet it was abnormally increased in the latter group. Based on the features of the WM functional connectome, previously un‐evaluated individuals could be classified with fair accuracy (73%) and area under the curve of the receiver operating characteristics (75%). These neuroimaging findings provide direct evidence for WM functional changes in PD, which is crucial to understand the functional role of fiber tracts in the pathology of neural circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.