The melon fly, Zeugodacus cucurbitae (Coquillett), is a serious pest of many fruits and vegetables throughout the world. Here we have developed an easy and quick-to-prepare solid medium with multiple benefits including reductions in post-rearing waste, storage space, and labor for rearing Z. cucurbitae larvae. The development time from egg to pupa was 19.11 d when larvae were reared on the artificial diet, slightly longer than 17.73 d on pumpkin and 17.13 d on cucumber. Zeugodacus cucurbitae achieved higher values of pupal weight, length, and width on the artificial diet than two natural diet controls. The rates of pupation and adult emergence of Z. cucurbitae grown on the solid medium were comparable with those on pumpkin and cucumber. Furthermore, determined by age-specific two-sex life table method, the age-specific survival rate of Z. cucurbitae was higher on the artificial diet than cucumber but lower than pumpkin. The reproductive ability and population dynamics of Z. cucurbitae were not significantly affected on the solid medium compared with those on the two natural diets. The results suggest that our solid artificial diet is excellent for rearing Z. cucurbitae larvae in laboratory and may be used for its mass rearing, therefore facilitating its research and control.
Argonaute family genes encode a highly conserved group of proteins that have been associated with RNA silencing in both animals and plants. This study investigates the importance of microRNA biogenesis key regulators Argonaute1 (Ago1) and Gawky genes in the post-embryonic and ovarian development of the melon fly, Zeugodacus cucurbitae. The expression levels of these genes were mapped in all developmental stages and different adult tissues. Their roles in development were investigated using RNA interference (RNAi) via two different dsRNA delivery techniques. Embryo microinjection and oral feeding of third instar larvae successfully knocked down and greatly reduced the expression level of the target genes. Additionally, ex vivo essays revealed the stability of dsRNA in food was sufficient for gene silencing, although its integrity was affected in midgut. A wide range of phenotypes were observed on pupation, segmentation, pigmentation, and ovarian development. RNAi-mediated silencing of Gawky caused high mortality and loss of body segmentation, while Ago1 knockdown affected ovarian development and pigmentation. Developmental abnormalities and ovarian malformations caused by silencing these genes suggest that these genes are crucial for viability and reproductive capacity of Z. cucurbitae, and may be used as potential target genes in pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.