View related articles View Crossmark data Citing articles: 34 View citing articles Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae
Recently, the use of herbs in the agriculture and food industry has increased significantly. In particular, Rosmarinus officinalis L. extracts have been reported to have strong antibacterial properties, which depend on their chemical composition. The present study displayed a biological method for synthesis of magnesium oxide (MgO) nano-flowers. The nano-flowers are developed without using any catalyst agent. Aqueous Rosemary extract was used to synthesize MgO nano-flowers (MgONFs) in stirring conditions and temperature at 70°C for 4 h. The mixture solution was checked by UV-Vis spectrum to confirm the presence of nanoparticles. The MgO nano-flowers powder was further characterized in this study by the X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. In addition, bacteriological tests indicated that MgO nano-flowers significantly inhibited bacterial growth, biofilm formation, and motility of Xanthomonas oryzae pv. oryzae, which is the causal agent of bacterial blight disease in rice. The electronic microscopic observation showed that bacterial cell death may be mainly due to destroy of cell integrity, resulting in leakage of intracellular content. As recommended, the use of Rosemary extract is an effective and green way to produce the MgO nano-flowers, which can be widely used in agricultural fields to suppress bacterial infection.
Bacterial stem and root rot disease of sweet potato caused by Dickeya dadantii recently broke out in major sweet potato planting areas in China and calls for effective approaches to control the pathogen and disease. Here, we developed a simple method for green synthesis of silver nanoparticles (AgNPs) using bacterial culture supernatants. AgNPs synthesized with the cell-free culture supernatant of a bacterium Pseudomonas rhodesiae displayed the characteristic surface plasmon resonance peak at 420–430 nm and as nanocrystallites in diameters of 20–100 nm determined by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction spectroscopy. Functional groups associated with proteins in the culture supernatant may reduce silver ions and stabilize AgNPs. The AgNPs showed antibacterial activities against D. dadantii growth, swimming motility, biofilm formation, and maceration of sweet potato tubers whereas the culture supernatant of P. rhodesiae did not. AgNPs (12 µg∙ml−1) and AgNO3 (50 µg∙ml−1) showed close antibacterial activities. The antibacterial activities increased with the increase of AgNP concentrations. The green-synthesized AgNPs can be used to control the soft rot disease by control of pathogen contamination of sweet potato seed tubers.
Bacillus thuringiensis (Bt) can produce Cry proteins during the sporulation phase, and Cry protein is effective against lepidopteran, coleopteran, and dipteran insects and nematodes. However, Cry protein tends to be discharged into soil and nontarget plants through rainwater runoff, leading to reduced effective period toward target insects. In the present study, nano-Mg(OH) (magnesium hydroxide nanoparticles, MHNPs) were synthesized to control the loss of Cry1Ac protein and deliver protein to Helicoverpa armigera (Lepidoptera: Noctuidae). The results showed that Cry1Ac protein could be loaded onto MHNPs through electrostatic adsorption, and both MHNPs and Cry protein were stable during the adsorption process. Meanwhile, the Cry1Ac-loaded MHNPs could remain on the surface of cotton leaves, resulting in enhanced adhesion of Cry1Ac protein by 59.50% and increased pest mortality by 75.00%. Additionally, MHNPs could be slowly decomposed by acid medium and MHNPs showed no obvious influence on cotton, Bt, Escherichia coli, and H. armigera. Therefore, MHNPs could serve as an efficient nanocarrier for delivery of Cry1Ac protein and be used as a potential adjuvant for biopesticide in agricultural applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.