Objective: Spirometry, as the gold standard approach in the diagnosis of chronic obstructive pulmonary disease (COPD), has strict end of test (EOT) criteria (e.g. complete exhalation), which cannot be met by patients with compromised health states. Thus, significant parameters measured by spirometry, such as forced vital capacity (FVC), have limited accuracies. To address this issue, the present study aimed to develop models based on support vector regression (SVR) to predict values of FVC under the condition that the EOT criteria were not fully met. Approach: The prediction models for the quantification of FVC were developed based on SVR. A total of 354 subjects underwent conventional spirometry (CS), and the resulting data of forced expiratory volumes in 1 s (FEV1), peak expiratory flow (PEF), age and gender were used as input features, while the resulting values of the FVC were used as the target feature in the prediction models. Next, three prediction models (mixed model, normal model and abnormal model) were established according to the criterion in the diagnosis of COPD that a postbronchodilator shows an FEV1/FVC ratio lower than 0.70. Then, 35 subjects were recruited to be tested using both CS and a low-degree-of-EOT criteria spirometry (LDCS), which did not fully meet the EOT criteria of CS. In LDCS, subjects were allowed to terminate the procedure at their own will at any time after the technicians had assumed that both acceptable values of FEV1 and PEF had been obtained. Quantified values of FVC derived from both CS and LDCS were compared to validate the performances of the developed prediction models. Main results: The FVC prediction performances of the normal model and abnormal model were better than that of the mixed model. The root mean squared error are lower than 0.35 l and the accuracies are higher up to 95%. One-tailed t test results demonstrate that the absolute differences in the measured and predicted values are not significantly different from 0.15 l for both the abnormal model and the normal model. Significance: Our study shows the possibility of predicting FVC with acceptable precision in cases where the EOT criteria of spirometry were not fully met, which can be beneficial for patients who cannot or did not achieve full exhalation in spirometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.