Eugenol can be separated from the oil extract of clove bud, and has many pharmacological functions such as anticancer and transdermal absorption. HER2/PI3K-AKT is a key signaling pathway in the development of breast cancer. In this study, 80 μM eugenol could significantly inhibit the proliferation of HER-2 positive MCF-10AT cells and the inhibition rate was up to 32.8%, but had no obvious inhibitory effect on MCF-7 and MCF-10A cells with HER2 weak expression. Eugenol also significantly induced human breast precancerous lesion MCF-10AT cell apoptosis and cell cycle S-phase arrest, but the biological effects nearly disappeared after HER2 over-expression through transfecting pcDNA3.1-HER2. In MCF-10AT cells treated by 180 μM eugenol, the protein expressions of HER2, AKT, PDK1, p85, Bcl2, NF-κB, Bad and Cyclin D1 were decreased and the decreased rates were respectively 63.0%, 60.0%, 52.9%, 62.9%, 37.1%, 47.2%, 61.7%, 59.1%, while the p21, p27 and Bax expression were increased by 4.48-, 4.76- and 2.57-fold respectively. In the rat models of breast precancerous lesion, 1 mg eugenol for external use significantly inhibited the progress of breast precancerous lesion and the occurrence rate of breast precancerous lesions and invasive carcinomas was decreased by about 30.5%. Furthermore eugenol for external (1 mg) markedly decreased the protein expressions of HER2 (62.9%), AKT (58.6%), PDK1 (56.4%), p85 (54.3%), Bcl2 (59.3%), NF-κB (65.7%), Bad (64.0%), Cyclin D1 (43.0%), while p21, p27 and Bax protein expressions were respectively increased 1.83-, 2.52- and 2.51-fold. The results showed eugenol could significantly inhibit the development of breast precancerous lesions by blocking HER2/PI3K-AKT signaling network. So eugenol may be a promising external drug for breast precancerous lesions.
In the classification and typing of breast cancer, triple-negative breast cancer (TNBC) is one type of refractory breast cancer, while chemotherapy stays in the traditional treatment methods. However, the impact of chemotherapy is short-lived and may lead to recurrence due to incomplete killing of tumor cells. The occurrence, development, and relapse of breast cancer are relevant to T cell dysfunction, multiplied expression of related immune checkpoint molecules (ICIs) such as programmed death receptor 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) produce immunosuppressive effect. Immunotherapy (namely, immune checkpoint inhibitors, adoptive cellular immunotherapy, CAR-T immunotherapy and some potential treatments) provides new hope in TNBC. This review focuses on the new immune strategies of TNBC patients.
Alteration in cellular energy metabolism plays a critical role in the development and progression of cancer. Targeting metabolic pathways for cancer treatment has been investigated as potential preventive or therapeutic methods. Eugenol (Eu), a major volatile constituent of clove essential oil mainly obtained from Syzygium, has been reported as a potential chemopreventive drug. However, the mechanism by which Eu regulates cellular energy metabolism is still not well defined. This study was designed to determine the effect of Eu on cellular energy metabolism during early cancer progression employing untransformed and H-ras oncogene transfected MCF10A human breast epithelial cells. Eu showed dose-dependent selective cytotoxicity toward MCF10A-ras cells but exhibited no apparent cytotoxicity in MCF10A cells. Treatment with Eu also significantly reduced intracellular ATP levels in MCF10A-ras cells but not in MCF10A cells. This effect was mediated mainly through inhibiting oxidative phosphorylation (OXPHOS) complexs and the expression of fatty acid oxidation (FAO) proteins including PPARα, MCAD and CPT1C by downregulating c-Myc/PGC-1β/ERRα pathway and decreasing oxidative stress in MCF10A-ras cells. These results indicate a novel mechanism involving the regulation of cellular energy metabolism by which Eu may prevent breast cancer progression.
Acetyl-11-keto-β-boswellic acid (AKBA) has therapeutic effects on a range of diseases, including tumours. lncRNAs, as competing endogenous RNAs (ceRNAs), can interact with miRNAs to regulate the expression of target genes, which can affect the development of tumors. Here, we examined the effects of AKBA on breast precancerous lesions MCF-10AT cells. Methods: The expression profiles of breast cancer (BC) tissue were collated from The Cancer Genome Atlas (TCGA), and the lncRNA-miRNA-mRNA ceRNA network was constructed. AKBA targets were predicted by network pharmacology. The expression of long intergenic nonprotein-coding RNA 707 (LINC00707), miR-206 and ER-α was determined by qRT-PCR. Cell viability, apoptosis and cycle were assessed by CCK-8 and flow cytometry. Protein levels were measured by Western blotting. Results: A total of 3205 differentially expressed mRNAs, 104 miRNAs, and 605 lncRNAs were identified. The ceRNA network consisting of 9 lncRNAs, 15 miRNAs and 82 mRNAs was constructed. We found that LINC00707 was up-regulated and miR-206 was downregulated in MCF-10AT cells. Transfected si-LINC00707 could inhibit cell proliferation, induce cell apoptosis and cycle arrest of MCF-10AT cells. In addition, network pharmacology predicted that AKBA may regulate the ESR1 in the treatment of BC. Our research demonstrated that AKBA could induce cell apoptosis and G1-phase arrest and inhibit ER-α expression via LINC00707/miR-206 in MCF-10AT cells. Conclusion: AKBA inhibited MCF-10AT cells via regulation of LINC00707/miR-206 that reduces ER-α.
Purpose. To evaluate the therapeutic effectiveness and safety of shenqi fuzheng injection (SFI) in the associated chemotherapy of breast cancer. Methods. 1247 subjects were included in this study for meta-analysis with RevMan 5.3. Results. The clinical curative effective rate (OR = 2.03, 95% Cl [1.44, 2.86], P < 0.0001), grades of KPS (OR = 4.11, 95% Cl [2.74, 6.16], P < 0.00001), CD3+ cells (MD = 7.05, 95% Cl [0.45, 13.64], P = 0.04) and CD4+ cells (MD = 8.60, 95% Cl [2.67, 14.54], P = 0.004) and CD4/CD8+ cells (MD = 0.35, 95% Cl [0.14, 0.56], P = 0.001), WBC (OR = 0.30, 95% Cl [0.20, 0.46], P ≤ 0.0001), PLT (OR = 0.36, 95% Cl [0.20, 0.67], P = 0.001), gastrointestinal reaction (OR = 0.21, 95% Cl [0.14, 0.32], P < 0.00001), and ECG (OR = 0.26, 95% Cl [0.13, 0.51], P < 0.0001) in the experimental group were superior to the control group. While there were no differences between two groups in CD8+ (MD = 0.21, 95% Cl [−2.81, 3.23], P = 0.89), NK+ (MD = 1.06, 95% Cl [−9.40, 11.53], P = 0.84), RBC (OR = 0.49, 95% Cl [0.14, 1.74], P = 0.27), liver function (OR = 0.59, 95% Cl [0.28, 1.24], P = 0.16), renal function (OR = 0.56, 95% Cl [0.13, 2.45], P = 0.44), and bone marrow suppression (OR = 0.50, 95% Cl [0.25, 1.01], P = 0.05). Conclusion. SFI combined with chemotherapy, to some extent, can improve the effectiveness and the security in the treatment of breast cancer; the mechanism may be related to the elevated immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.