This paper formulates a new three-dimensional chaotic system that originates from the Lorenz system, which is different from the known Lorenz system, Rössler system, Chen system, and includes Lü systems as its special case. By using the center manifold theorem, the stability character of its nonhyperbolic equilibria is obtained. The Hopf bifurcation and the degenerate pitchfork bifurcation, the local character of stable manifold and unstable manifold, are also in detail shown when the parameters of this system vary in the space of parameters. Corresponding bifurcation cases are illustrated by numerical simulations, too. The existence or non-existence of homoclinic and heteroclinic orbits of this system is also studied by both rigorous theoretical analysis and numerical simulation.
In this paper, a new Lorenz-type system with chaotic attractor is formulated. The structure of the chaotic attractor in this new system is found to be completely different from that in the Lorenz system or the Chen system or the Lü system, etc., which motivates us to further study in detail its complicated dynamical behaviors, such as the number of its equilibrium, the stability of the hyperbolic and nonhyperbolic equilibrium, the degenerate pitchfork bifurcation, the Hopf bifurcation and the local manifold character, etc., when its parameters vary in their space. The existence or nonexistence of homoclinic and heteroclinic orbits of this system is also rigorously proved. Numerical simulation evidences are also presented to examine the corresponding theoretical analytical results.
In this paper, we use a method different from the known literature to investigate the global behavior of the following fourth-order rational difference equation:x n+1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.