Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus worldwide. However, whether and how HHV-6 infection influences the metabolic machinery of the host cell to provide the energy and biosynthetic resources for virus propagation remains unknown. In this study, we identified that HHV-6A infection promotes glucose metabolism in infected T cells, resulting in elevated glycolytic activity with an increase of glucose uptake, glucose consumption and lactate secretion. Furthermore, we explored the mechanisms involved in HHV-6A-mediated glycolytic activation in the infected T cells. We found increased expressions of the key glucose transporters and glycolytic enzymes in HHV-6A-infected T cells. In addition, HHV-6A infection dramatically activated AKT-mTORC1 signaling in the infected T cells and pharmacological inhibition of mTORC1 blocked HHV-6A-mediated glycolytic activation. We also found that direct inhibition of glycolysis by 2-Deoxy-D-glucose (2-DG) or inhibition of mTORC1 activity in HHV-6A-infected T cells effectively reduced HHV-6 DNA replication, protein synthesis and virion production. These results not only reveal the mechanism of how HHV-6 infection affects host cell metabolism, but also suggest that targeting the metabolic pathway could be a new avenue for HHV-6 therapy.
Human herpesviruses 6A and 6B (HHV-6A and HHV-6B, respectively) are two virus species in the betaherpesvirus subfamily that exhibit T cell tropism. CD46 and CD134 are the cellular receptors for HHV-6A and HHV-6B, respectively. Interestingly, the efficiency of HHV-6A/6B entry is different among different types of target cells despite similar receptor expression levels on these cells. Here, we found that the cellular factor gp96 (also known as glucose-regulated protein 94 [GRP94]) is expressed on the cell surface and interacts with viral glycoprotein Q1 (gQ1) during virus entry. gp96 cell surface expression levels are associated with the efficiency of HHV-6A and HHV-6B entry into target cells. Both loss-of-function and gain-of-function experiments indicated that gp96 plays an important role in HHV-6 infection. Our findings provide new insight into the HHV-6 entry process and might suggest novel therapeutic targets for HHV-6 infection. IMPORTANCE Although new clinical importance has been revealed for human herpesviruses 6A (HHV-6A) and 6B, much is still unknown about the life cycles of these viruses in target cells. We identified a novel cellular factor, gp96, that is critical for both HHV-6A and -6B entry into host cells. As gp96 can function as an adjuvant in vaccine development for both infectious agents and cancers, it can be a potential therapeutic target for infection by these two viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.