In this paper, a novel method to analyze the similarity/dissimilarity of protein sequences based on Principal Component Analysis-Fast Fourier Transformation (PCA-FFT) is proposed, in which, the PCA is utilized to transform protein sequences into time series and the FFT is utilized to analyze the time series while considering them as signals. To test the effectiveness of our newly proposed method, it is applied to analyze the similarity/dissimilarity of 16 different ND5 protein sequences and 29 different spike protein sequences, respectively. Furthermore, the correlation analysis is presented for comparing with others methods, and the simulation results show that it has better performances in the aspects of computation complexity and recognition degree than some existing methods.
Recent studies have indicated that microRNAs (miRNAs) are closely related to sundry human sophisticated diseases. According to the surmise that functionally similar miRNAs are more likely associated with phenotypically similar diseases, researchers have proposed a variety of valid computational models through integrating known miRNA-disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity to discover the potential miRNA-disease relationships in biomedical researches. Taking account of the limitations of previous computational models, a new computational model based on biased heat conduction for MiRNA-Disease Association prediction (BHCMDA) was proposed in this paper, which can achieve the AUC of 0.8890 in LOOCV (Leave-One-Out Cross Validation) and the mean AUC of 0.9060, 0.8931 under the framework of twofold cross validation, fivefold cross validation, respectively. In addition, BHCMDA was further implemented to the case studies of three vital human cancers, and simulation results illustrated that there were 88% (Esophageal Neoplasms), 92% (Colonic Neoplasms) and 92% (Lymphoma) out of top 50 predicted miRNAs having been confirmed by experimental literatures, separately, which demonstrated the good performance of BHCMDA as well. Thence, BHCMDA would be a useful calculative resource for potential miRNA-disease association prediction.
Microbes are intimately tied to the occurrence of various diseases that cause serious hazards to human health, and play an essential role in drug discovery, clinical application, and drug quality control. In this manuscript, we put forward a novel prediction model named MDASAE based on a stacked autoencoder (SAE) with multi-head attention mechanism to infer potential microbe-drug associations. In MDASAE, we first constructed three kinds of microbe-related and drug-related similarity matrices based on known microbe-disease-drug associations respectively. And then, we fed two kinds of microbe-related and drug-related similarity matrices respectively into the SAE to learn node attribute features, and introduced a multi-head attention mechanism into the output layer of the SAE to enhance feature extraction. Thereafter, we further adopted the remaining microbe and drug similarity matrices to derive inter-node features by using the Restart Random Walk algorithm. After that, the node attribute features and inter-node features of microbes and drugs would be fused together to predict scores of possible associations between microbes and drugs. Finally, intensive comparison experiments and case studies based on different well-known public databases under 5-fold cross-validation and 10-fold cross-validation respectively, proved that MDASAE can effectively predict the potential microbe-drug associations.
Growing evidence have demonstrated that many biological processes are inseparable from the participation of key proteins. In this paper, a novel iterative method called linear neighborhood similarity-based protein multifeatures fusion (LNSPF) is proposed to identify potential key proteins based on multifeature fusion. In LNSPF, an original protein-protein interaction (PPI) network will be constructed first based on known protein-protein interaction data downloaded from benchmark databases, based on which, topological features will be further extracted. Next, gene expression data of proteins will be adopted to transfer the original PPI network to a weighted PPI network based on the linear neighborhood similarity. After that, subcellular localization and homologous information of proteins will be integrated to extract functional features for proteins, and based on both functional and topological features obtained above. And then, an iterative method will be designed and carried out to predict potential key proteins. At last, for evaluating the predictive performance of LNSPF, extensive experiments have been done, and compare results between LNPSF and 15 state-of-the-art competitive methods have demonstrated that LNSPF can achieve satisfactory recognition accuracy, which is markedly better than that achieved by each competing method.
A lot of research studies have shown that many complex human diseases are associated not only with microRNAs (miRNAs) but also with long noncoding RNAs (lncRNAs). However, most of the current existing studies focus on the prediction of disease-related miRNAs or lncRNAs, and to our knowledge, until now, there are few literature studies reported to pay attention to the study of impact of miRNA-lncRNA pairs on diseases, although more and more studies have shown that both lncRNAs and miRNAs play important roles in cell proliferation and differentiation during the recent years. The identification of disease-related genes provides great insight into the underlying pathogenesis of diseases at a system level. In this study, a novel model called PADLMHOOI was proposed to predict potential associations between diseases and lncRNA-miRNA pairs based on the higher-order orthogonal iteration, and in order to evaluate its prediction performance, the global and local LOOCV were implemented, respectively, and simulation results demonstrated that PADLMHOOI could achieve reliable AUCs of 0.9545 and 0.8874 in global and local LOOCV separately. Moreover, case studies further demonstrated the effectiveness of PADLMHOOI to infer unknown disease-related lncRNA-miRNA pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.