Homogeneous band- or pixel-based feature selection, which exploits the difference between spectral or spatial regions to select informative and low-redundant bands, has been extensively studied in classifying hyperspectral images (HSIs). Although many models have proven effective, they rarely simultaneously exploit homogeneous spatial and spectral information, which are beneficial to extract potential low-dimensional characteristics even under noise. Moreover, the employed vectorial transformation and unordered assumption destroy the implicit knowledge of HSIs. To solve these issues, a dual homogeneous pixel patches-based methodology termed PHSIMR was created for selecting the most representative, low-redundant, and informative bands, integrating hybrid superpixelwise adjacent band grouping and regional informative mutuality ranking algorithms. Specifically, the adjoining band grouping technique is designed to group adjacent bands into connected clusters with a small homogeneous pixel patch containing several homolabeled adjacent spatial points. Hence, the processing is efficient, and the superpixelwise adjoining band grouping can perceptually and quickly acquire connected band groups. Furthermore, the constructed graph and affiliated group avoid vectorial transformation and unordered assumption, protecting spectral and spatial contextual information. Then, the regional informative mutuality ranking algorithm is employed on another larger pixel patch within each homogeneous band group, acquiring the final representative, low-redundant, and informative band subset. Since the employed dual patches consist of homolabeled spatial pixels, PHSIMR is a supervised methodology. Comparative experiments on three benchmark HSIs were performed to demonstrate the efficiency and effectiveness of the proposed PHSIMR.
Abstract. In recent years, deep learning technology has been continuously developed and gradually transferred to various fields. Among them, Convolutional Neural Network (CNN), which has the ability to extract deep features of images due to its unique network structure, plays an increasingly important role in the realm of Hyperspectral images classification. This paper attempts to construct a features fusion model that combines the deep features derived from 1D-CNN and 2D-CNN, and explores the potential of features fusion model in the field of hyperspectral image classification. The experiment is based on the deep learning open source framework TensorFlow with Python3 as programming environment. Firstly, constructing multi-layer perceptron (MLP), 1D-CNN and 2DCNN models respectively, and then, using the pre-trained 1D-CNN and 2D-CNN models as feature extractors, finally, extracting features via constructing the features fusion model. The general open hyperspectral datasets (Pavia University) were selected as a test to compare classification accuracy and classification confidence among different models. The experimental results show that the features fusion model obtains higher overall accuracy (99.65%), Kappa coefficient (0.9953) and lower uncertainty for the boundary and unknown regions (3.43%) in the data set. Since features fusion model inherits the structural characteristics of 1D-CNN and 2DCNN, the complementary advantages between the models are achieved. The spectral and spatial features of hyperspectral images are fully exploited, thus getting state-of-the-art classification accuracy and generalization performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.