In this paper, the performance of a gas engine-driven heat pump (GEHP) was experimentally studied for space heating and cooling. An experimental test facility was developed for this purpose. The effect of key parameters on system performance was investigated under both cooling and heating modes. The results showed that as the engine speed increased from 1400 to 2000 rpm, the cooling and heating capacities increased by 23% and 28.5%, respectively while the GEHP system Primary Energy Ratio (PER) decreased by 13.5% and 11.7% in the cooling and heating modes, respectively. The system PER in the cooling mode was found lower than that in the heating mode. This indicated that heat recovery from the engine cylinder and exhaust gas was very important for improving the GEHP system performance. In the heating mode, the ambient temperature and condenser water flow rate had a large effect on the system heating capacity and PER, and insignificant effect on the gas energy input. In the cooling mode, the chilled water inlet temperature showed a large effect on both cooling capacity and gas energy input while the chilled water flow rate had a large effect on cooling capacity and insignificant effect on the gas energy input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.