The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.
Bcl-2, which belongs to the Bcl-2 family, is frequently overexpressed in various types of cancer cells and contributes to drug resistance. However, the function of Bcl-2 in cisplatin resistance in human ovarian cancer cells is not fully understood. In this study, we found that the pharmacological inhibitor ABT737 or genetic knockdown of Bcl-2 increased cisplatin cytotoxicity in cisplatin-resistant ovarian cancer cells. Additionally, treatment with ABT737 or Bcl-2 siRNA increased cisplatin-induced free Ca2+ levels in the cytosol and mitochondria, which increased endoplasmic reticulum (ER)-associated and mitochondria-mediated apoptosis. In addition, ABT737 or Bcl-2 siRNA increased the ER-mitochondria contact sites induced by cisplatin in cisplatin-resistant SKOV3/DDP ovarian cancer cells. Consistently with the in vitro results, ABT737 potently synergized with cisplatin in inhibiting the growth of human ovarian cancer xenografts in nude mice. Collectively, these results indicate that pharmacological inhibitors or genetic knockdown of Bcl-2 may be a potential strategy for improving cisplatin treatment of ovarian cancer.
Pancreatic cancer is one of the most malignant tumors worldwide, and pancreatic ductal adenocarcinoma is the most common type. In pancreatic cancer, glycolysis is the primary way energy is produced to maintain the proliferation, invasion, migration, and metastasis of cancer cells, even under normoxia. However, the potential molecular mechanism is still unknown. From this perspective, this review mainly aimed to summarize the current reasonable interpretation of aerobic glycolysis in pancreatic cancer and some of the newest methods for the detection and treatment of pancreatic cancer. More specifically, we reported some biochemical parameters, such as newly developed enzymes and transporters, and further explored their potential as diagnostic biomarkers and therapeutic targets.
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and is associated with a high mortality rate and poor treatment efficacy. In an attempt to investigate the mechanisms involved in the pathogenesis of HCC, bioinformatic analysis and validation by qRT-PCR were performed. Three circRNA GEO datasets and one miRNA GEO dataset were selected for this purpose. Upon combined biological prediction, a total of 11 differentially expressed circRNAs, 15 differentially expressed miRNAs, and 560 target genes were screened to construct a circRNA-related ceRNA network. GO analysis and KEGG pathway analysis were performed for the 560 target genes. To further screen key genes, a protein-protein interaction network of the target genes was constructed using STRING, and the genes and modules with higher degree were identified by MCODE and CytoHubba plugins of Cytoscape. Subsequently, a module was screened out and subjected to GO enrichment analysis and KEGG pathway analysis. This module included eight genes, which were further screened using TCGA. Finally, UBE2L3 was selected as a key gene and the hsa_circ_0009910–miR-1261–UBE2L3 regulatory axis was established. The relative expression of the regulatory axis members was confirmed by qRT-PCR in 30 pairs of samples, including HCC tissues and adjacent nontumor tissues. The results suggested that hsa_circ_0009910, which was upregulated in HCC tissues, participates in the pathogenesis of HCC by acting as a sponge of miR-1261 to regulate the expression of UBE2L3. Overall, this study provides support for the possible mechanisms of progression in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.