Renewable energy (RE) sources will aid in the decarbonization of the energy sector, which would assist in alleviating the negative consequences of climate change. However, using RE resources for hybrid power generation has two technological challenges, uncertainty and variability owing to RE features, making estimating generated power availability difficult. Artificial intelligence techniques have been used in a variety of applications in power systems, but demand-side response (DR) is just lately receiving major research interest. The DR is highlighted as one of the most promising ways of providing the electricity system with demand flexibility; as a result, many system operators believe that growing the scale and breadth of the DR programme is critical. There are many different sorts of demand reduction programmes, and the most common classification is dependent on who begins the demand reduction. There are two types of DR schemes: (1) price-based programmes and (2) incentive-based programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.