A principal goal of cancer nanomedicine is to deliver therapeutics effectively to cancer cells within solid tumors. However, there are a series of biological barriers that impede nanomedicine from reaching target cells. Here, we report a stimuli-responsive clustered nanoparticle to systematically overcome these multiple barriers by sequentially responding to the endogenous attributes of the tumor microenvironment. The smart polymeric clustered nanoparticle (iCluster) has an initial size of ∼100 nm, which is favorable for long blood circulation and high propensity of extravasation through tumor vascular fenestrations. Once iCluster accumulates at tumor sites, the intrinsic tumor extracellular acidity would trigger the discharge of platinum prodrug-conjugated poly(amidoamine) dendrimers (diameter ∼5 nm). Such a structural alteration greatly facilitates tumor penetration and cell internalization of the therapeutics. The internalized dendrimer prodrugs are further reduced intracellularly to release cisplatin to kill cancer cells. The superior in vivo antitumor activities of iCluster are validated in varying intractable tumor models including poorly permeable pancreatic cancer, drug-resistant cancer, and metastatic cancer, demonstrating its versatility and broad applicability.nanomedicine | particle size | tumor penetration | tumor extracellular pH | stimuli responsive
The efficacy of nano-mediated drug delivery has been impeded by multiple biological barriers such as the mononuclear phagocyte system (MPS), as well as vascular and interstitial barriers. To overcome the abovementioned obstacles, we report a nano-pathogenoid (NPN) system that can in situ hitchhike circulating neutrophils and supplement photothermal therapy (PTT). Cloaked with bacteria-secreted outer membrane vesicles inheriting pathogenassociated molecular patterns of native bacteria, NPNs are effectively recognized and internalized by neutrophils. The neutrophils migrate towards inflamed tumors, extravasate across the blood vessels, and penetrate through the tumors. Then NPNs are rapidly released from neutrophils in response to inflammatory stimuli and subsequently taken up by tumor cells to exert anticancer effects. Strikingly, due to the excellent targeting efficacy, cisplatinloaded NPNs combined with PTT completely eradicate tumors in all treated mice. Such a nano-platform represents an efficient and generalizable strategy towards in situ cell hitchhiking as well as enhanced tumor targeted delivery.
The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLAN successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.
Chemoimmunotherapy, which combines chemotherapeutics with immune-modulating agents, represents an appealing approach for improving cancer therapy. To optimize its therapeutic efficacy, differentially delivering multiple therapeutic drugs to target cells is desirable. Here we developed an immunostimulatory nanocarrier (denoted as SCNs/Pt) that could spatially target tumor-associated macrophages (TAMs) and tumor cells for cancer chemoimmunotherapy.SCNs/Pt undergo supersensitive structure collapse in the prevascular regions of tumor tissues and enable the simultaneous release of platinum (Pt)-prodrug conjugated small particles and BLZ-945, a small molecule inhibitor of colony stimulating factor 1 receptor (CSF-1R) of TAMs. The released BLZ-945 can be preferentially taken up by TAMs to cause TAMs depletion from tumor tissues, while the small particles carrying Pt-prodrug enable deep tumor penetration as well as intracellularly specific drug release to kill more cancer cells. Our studies demonstrate that SCNs/Pt outperform their monotherapy counterparts in multiple tumor models. The underlying mechanism studies suggest that the designer pH-sensitive codelivery nanocarrier not only induces apoptosis of tumor cells but also modulates the tumor immune environment to eventually augment the antitumor effect of CD8 cytotoxic T cells through TAMs depletion.
Precisely controlling the interaction of nanoparticles with biological systems (nanobio interactions) from the injection site to biological targets shows great potential for biomedical applications. Inspired by the ability of nanoparticles to alter their physicochemical properties according to different stimuli, we explored the tumor acidity and near-infrared (NIR) light activated transformable nanoparticle TAT-NP. This nanoparticle consists of a tumor acidity-activated TAT [the TAT lysine residues' amines was modified with 2,3-dimethylmaleic anhydride (DA)], a flexible chain polyphosphoester core coencapsulated a NIR dye IR-780, and DOX (doxorubicin). The physicochemical properties of the nanoparticle can be controlled in a stepwise fashion using tumor acidity and NIR light, resulting in adjustable nanobio interactions. The resulting transformable nanoparticle TAT-NP efficiently avoids the interaction with mononuclear phagocyte system (MPS) ("stealth" state) due to the masking of the TAT peptide during blood circulation. Once it has accumulated in the tumor tissues, TAT-NP is reactivated by tumor acidity and transformed into the "recognize" state in order to promote interaction with tumor cells and enhance cellular internalization. Then, this nanoparticle is transformed into "attack" state under NIR irradiation, achieving the supersensitive DOX release from the flexible chain polyphosphoester core in order to increase the DOX-DNA interaction. This concept provides new avenues for the creation of transformable drug delivery systems that have the ability to control nanobio interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.