BackgroundThe aim of this study was to use a three-dimensional (3D) visualization technology to illustrate and describe the anatomical features of the penile suspensory ligamentous system based on the Visible Human data sets and to explore the suspensory mechanism of the penis for the further improvement of the penis-lengthening surgery.Material/MethodsCross-sectional images retrieved from the first Chinese Visible Human (CVH-1), third Chinese Visible Human (CVH-3), and Visible Human Male (VHM) data sets were used to segment the suspensory ligamentous system and its adjacent structures. The magnetic resonance imaging (MRI) images of this system were studied and compared with those from the Visible Human data sets. The 3D models reconstructed from the Visible Human data sets were used to provide morphological features of the penile suspensory ligamentous system and its related structures.ResultsThe fundiform ligament was a superficial, loose, fibro-fatty tissue which originated from Scarpa’s fascia superiorly and continued to the scrotal septum inferiorly. The suspensory ligament and arcuate pubic ligament were dense fibrous connective tissues which started from the pubic symphysis and terminated by attaching to the tunica albuginea of the corpora cavernosa. Furthermore, the arcuate pubic ligament attached to the inferior rami of the pubis laterally.ConclusionsThe 3D model based on Visible Human data sets can be used to clarify the anatomical features of the suspensory ligamentous system, thereby contributing to the improvement of penis-lengthening surgery.
Diabetes is a chronic metabolic disease with a high prevalence worldwide, which typically delays or impairs wound healing, potentially causing death. Low-frequency ultrasound treatment promotes the repair of various injuries and may promote wound healing. The aim of the present study was to determine whether low-frequency ultrasound can accelerate wound healing, as well as investigate its effects on the expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in diabetic rats. A total of 45 Wistar rats were intraperitoneally injected with 1% streptozocin following intraperitoneal injection of pentobarbital sodium anesthesia. Subsequently an incision wound was created in the skin of back. The area of the wound was recorded to calculate the rate of wound healing. The expression of VEGF and TGF-β1 was determined via immunohistochemical analysis and their mRNA and protein levels were measured via reverse transcription-quantitative PCR analysis. The results revealed that when compared with the control group, low-frequency ultrasound treatment significantly increased wound healing rate in diabetic rats and markedly increased the mRNA and protein levels of VEGF and TGF-β1. US treatment also reduced the mRNA and protein levels of TNF-α and IL-6. In conclusion, the results of the present study indicated that low-frequency ultrasound promotes the expression of VEGF and TGF-β1, and inhibits the expression of IL-6 and TNF-α, thereby promoting wound healing in diabetic rats.
miR15b and SALL4 are involved in a variety of tumor progression. The roles of miR15b and SALL4 in oral squamous cell carcinoma (OSCC) remains unclear. The tumors and normal mucosa of OSCC patients were collected to detect miR15b and SALL4 level by Real-time PCR and analyze their correlation
with OSCC clinicopathological features. Oral cancer Tca8113 cells were separated into control group; miR15b mimics group and miR15b inhibitor group followed by analysis of SALL4 expression, cell survival by MTT assay; cell invasion by Transwell chamber assay, as well as expression of N-cadherin
and Vimentin and correlated with TNM stage, tumor volume and metastasis, and positively with differentiation TGF-β by Western blot. miR15b expression was decreased and SALL4 expression was increased in OSCC tumor tissues. miR15b was negatively degree (P < 0.05), whereas,
opposite correlation of SALL4 with the above parameters was found (P < 0.05). miR15b and SALL4 were negatively correlated. MiR15b mimics significantly up-regulated MiR15b, decreased SALL4 expression, inhibited Tca8113 cell proliferation and invasion, as well as reduced N-cadherin,
Vimentin and TGF-βexpression (P < 0.05). Opposite results were found in MiR15b inhibitor group. MiR15b expression is decreased and SALL 4 is increased in OSCC tumor tissues. MiR15b and SALL4 is closely related to OSCC clinicopathological features. MiR15b regulates the
expression of EMT-related genes and TGF-β, thereby altering the proliferation and invasion of OSCC cells.
miR-125b is involved in several tumors. However, miR-125b’s role in oral squamous cell carcinoma (OSCC) is unclear. Tumor tissues and oral normal mucosa tissues of OSCC patients were collected to measure miR-125b level. Oral cancer Tca8113 cells were separated into control group,
miR-125b inhibitor group, and miR-125b mimics group, followed by measuring miR-125b level by real time PCR, cell survival, migration and invasion, PI3K/mTOR signaling protein level by Western blot. miR-125b was upregulated in OSCC tumor tissues and related to clinical/TNM stage, metastasis
and overall survival (P < 0.05). miR-125b overexpression significantly promoted tumor cell behaviors and increased PI3K/mTOR phosphorylation (P < 0.05); while inhibiting miR-125b expression significantly inhibited tumor cell biological behaviors, and decreased PI3K/mTOR
phosphorylation (P < 0.05). miR-125b level is increased in OSCC tumor tissues, which is related to clinicopathological characteristics. miR-125b overexpression promotes OSCC cell behaviors by regulating PI3K/mTOR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.