Objective We focus on improving the long-term stability and functionality of neural interfaces for chronic implantation by using bilayer encapsulation. Approach We evaluated the long-term reliability of Utah electrode array (UEA) based neural interfaces encapsulated by 52 nm of atomic layer deposited (ALD) Al2O3 and 6 μm of Parylene C bilayer, and compared these to devices with the baseline Parylene-only encapsulation. Three variants of arrays including wired, wireless, and active UEAs were used to evaluate this bilayer encapsulation scheme, and were immersed in phosphate buffered saline (PBS) at 57 °C for accelerated lifetime testing. Main results The median tip impedance of the bilayer encapsulated wired UEAs increased from 60 kΩ to 160 kΩ during the 960 days of equivalent soak testing at 37 °C, the opposite trend as typically observed for Parylene encapsulated devices. The loss of the iridium oxide tip metallization and etching of the silicon tip in PBS solution contributed to the increase of impedance. The lifetime of fully integrated wireless UEAs was also tested using accelerated lifetime measurement techniques. The bilayer coated devices had stable power-up frequencies at ~910 MHz and constant RF signal strength of -50 dBm during up to 1044 days (still under testing) of equivalent soaking time at 37 °C. This is a significant improvement over the lifetime of ~ 100 days achieved with Parylene-only encapsulation at 37 °C. The preliminary samples of bilayer coated active UEAs with a flip-chip bonded ASIC chip had a steady current draw of ~ 3 mA during 228 days of soak testing at 37 °C. An increase in current draw has been consistently correlated to device failures, so is a sensitive metric for their lifetime. Significance The trends of increasing electrode impedance of wired devices and performance stability of wireless and active devices support the significantly greater encapsulation performance of this bilayer encapsulation compared with Parylene-only encapsulation. The bilayer encapsulation should significantly improve the in vivo lifetime of neural interfaces for chronic implantation.
The lifetime of neural interfaces is a critical challenge for chronic implantations, as therapeutic devices (e.g., neural prosthetics) will require decades of lifetime. We evaluated the lifetime of wireless Utah electrode array (UEA) based neural interfaces with a bilayer encapsulation scheme utilizing a combination of alumina deposited by Atomic Layer Deposition (ALD) and parylene C. Wireless integrated neural interfaces (INIs), equipped with recording version 9 (INI-R9) ASIC chips, were used to monitor the encapsulation performance through radio-frequency (RF) power and telemetry. The wireless devices were encapsulated with 52 nm of ALD Al2O3 and 6 μm of parylene C, and tested by soaking in phosphate buffered solution (PBS) at 57 °C for 4× accelerated lifetime testing. The INIs were also powered continuously through 2.765 MHz inductive power and forward telemetry link at unregulated 5 V. The bilayer encapsulated INIs were fully functional for ∼35 days (140 days at 37 °C equivalent) with consistent power-up frequencies (∼910 MHz), stable RF signal (∼-75 dBm), and 100 % command reception rate. This is ∼10 times of equivalent lifetime of INIs with parylene-only encapsulation (13 days) under same power condition at 37 °C. The bilayer coated INIs without continuous powering lasted over 1860 equivalent days (still working) at 37 °C. Those results suggest that bias stress is a significant factor to accelerate the failure of the encapsulated devices. The INIs failed completely within 5 days of the initial frequency shift of RF signal at 57 °C, which implied that the RF frequency shift is an early indicator of encapsulation/device failure.
Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al(2)O(3) by atomic layer deposition with parylene C for implantable electronic systems. The Al(2)O(3)-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 °C) and elevated temperatures (57 °C and 67 °C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 MΩ at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 °C about 5 months (approximately equivalent to 40 months at 37 °C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 °C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.
With the rapid development of micro systems technology and microelectronics, smart implantable wireless electronic systems are emerging for the continuous surveillance of relevant parameters in the body and even for closed-loop systems with a sensor feed-back to drug release systems. With respect to diabetes management, there is a critical societal need for a fully integrated sensor array that can be used to continuously measure a patient’s blood glucose concentration, pH, pCO2 and colloid oncotic pressure twenty four hours a day on a long-term basis. In this work, thin films of metabolite-specific or “smart” hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain “chemomechanical sensors” that can serve as selective and versatile wireless biomedical sensors and sensor arrays for a continuous monitoring of several metabolites. Sensor response time and accuracy with which sensors can track gradual changes in glucose, pH, CO2 and ionic strength, respectively, was estimated in vitro using simulated physiological solutions. The biocompatibility and hermeticity of the developed multilayer encapsulation for the microsensor array has been investigated concerning the long-term stability and enduring functionality that is desired for permanent implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.