61The Tibetan Plateau (TP), known as the "sensible heat pump" and the 62 "atmospheric water tower", modifies monsoon circulations and regional energy and 63 water cycles over Asia (Wu and Zhang 1998; Zhao and Chen 2001a; Wu et al. 2007; 64 Xu et al. 2008b; Zhou et al. 2009). Strong ascent over the TP may transport lower-65 tropospheric water vapor and anthropogenic pollutants into the upper troposphere-66 lower stratosphere (UT-LS), which exerts an influence on the local ozone valley 67 (Zhou et al. 1995; Liu et al. 2003; Bian et al. 2011) and the aerosol-layer 68 enhancements near the tropopause (Tobo et al. 2007; Vernier et al. 2015). The TP also In the 1990s, a longer-term field experiment was conducted over the TP with the 84 support of the Japanese Experiment on Asian Monsoon (JEXAM). It estimated the 2008a; Zhang et al. 2012; Chen et al. 2011 Chen et al. , 2013. It found diurnal variations of et al. 2013; Hu et al. 2014; Zheng et al. 2014 Zheng et al. , 2015a Zheng et al. , b, c, 2016 Guo et al. 2015; 161 Zhuo et al. 2016; Wan et al. 2017). These problems may also cause large uncertainties 162 in reanalysis datasets and satellite products (such as air temperature, soil moisture, 163 surface heat fluxes, and radiation) over the TP (Li et al. 2012; Wang et al. 2012; Zhu 164 et al. 2012; Su et al. 2013; Zeng et al. 2016). 165To promote Tibetan meteorological research, the Third Tibetan Plateau 166Atmospheric Scientific Experiment (TIPEX-III), to continue for eight to ten years, OBJECTIVES. 173The field observational objective of TIPEX-III is to constitute a 3-D observation 174 system of the land surface, PBL, troposphere, and lower stratosphere over the TP. 175This system integrates ground-, air-, and space-based platforms based on the 176 meteorological operational networks, the TIPEX-III network, the existing NIOST (Fig. 1a). Consistent with the operational observations of the 265 CMA, at each site the measurement system measures soil water content ( Fig. 1a). The regional network consists of 33 sites over 270 Naqu (Fig. 1c), which began operating in August 2015, and 17 sites over Shiquanhe This network consists of six additional sites at Bange, Namucuo, Anduo, Nierong, 280Jiali, and Biru, and contributes to integrated research on the high-resolution land-281 surface and PBL processes over the central TP and their effects on mesoscale systems. 282These observations have been conducted at Shiquanhe, Namucuo, Naqu, Anduo, Gongshan (98.67°E, 27.75°N) station on the southeastern slope of the TP (Fig. 1b), a 300 key area for gauging water-vapor transports from the Indian Ocean to East Asia. (Fig. 1b). A primary goal of these observations is to explore the cloud (Fig. 1b). A follow-up field campaign using ground-based radars Tuotuohe, Mangya, Golmud, and Xining meteorological stations (Fig. 1b). Using PRELIMINARY ACHIEVEMENTS OF TIPEX-III. 328The implementation of TIPEX-III has enhanced the monitoring capability for the 380(1) Cloud diurnal variation and warm rain process. 3...
We proposed a dual-domain self-supervised motion artifacts disentanglement network (DSMAD-Net) for the liver's gadoxetic acid-enhanced arterial phase images. The motion correction is converted to the image-to-image translation problem by assuming that motion-free images and motion-corrupted images belong to different domains. Specifically, image-to-image translation within the same domain is designed to constrain auto-encoders to learn the feature representation by utilizing the input images as supervision information. Moreover, the cross-domain translation explores the cycle consistency in the absence of paired motion-free and motion-corrupted images. Experimental results demonstrate that our method remarkably removes artifacts in the gadoxetic acid-enhanced arterial phase images.
Background Implementation of Kangaroo Mother Care (KMC) in resource-limited areas of China may face unique barriers, such as a lack of resources, geographic location and more traditional culture among others. This qualitative study analyses the facilitators and barriers to implementing KMC in county-level health facilities in resource-limited areas of China for the promotion of KMC on a larger scale. Methods Participants from 4 of the 18 pilot counties where early essential newborn care was implemented through the Safe Neonatal Project and 4 control counties not enrolled in Safe Neonatal Project were selected using purposive sampling. A total of 155 participants were interviewed, including stakeholders of the Safe Neonatal Project such as national maternal health experts, relevant government officials and medical staff. Thematic analysis was used to process and analyse the interview content in order to summarise the facilitators and barriers to implementing KMC. Results KMC was accepted in the pilot areas but still faced certain challenges due to institutional regulation, resource provision and the perceptions of health staff, postpartum mothers and their families as well as COVID-19 prevention and control regulations. The facilitators identified were government officials and medical staff acceptance and the incorporation of KMC into routine clinical care. The barriers identified were a lack of dedicated funding and other resources, the present scope of health insurance and KMC cost-sharing mechanism, providers’ knowledge and practical abilities, parental awareness, postpartum discomfort, fathers’ inadequate involvement, and the impact from COVID-19. Conclusion The Safe Neonatal Project pilot experience indicated the feasibility of implementing KMC in more areas of China. Optimising institutional regulations, providing necessary supporting resources and enhancing education and training may help to refine the implementation and scale-up of KMC practice in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.