For a structure with implicit performance function structure and less sample data, it is difficult to obtain accurate probability distribution parameters by traditional statistical analysis methods. To address the issue, the probability distribution parameters of samples are often regarded as fuzzy numbers. In this paper, a novel fuzzy reliability analysis method based on support vector machine is proposed. Firstly, the fuzzy variable is converted into an equivalent random variable, and the equivalent mean and equivalent standard deviation are calculated. Secondly, the support vector regression machine with excellent small sample learning ability is used to train the sample data. Subsequently, and the performance function is approximated. Finally, the Monte Carlo method is used to obtain fuzzy reliability. Numerical examples are investigated to demonstrate the effectiveness of the proposed method, which provides a feasible way for fuzzy reliability analysis problems of small sample data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.