Based on the stability theory of fractionalorder system, a novel unidirectional adaptive full-state linear error feedback coupling scheme is extended to control and synchronize all of fractional-order differential (FOD) chaotic systems with in-commensurate (and commensurate) orders. The feedback strength is adaptive to an updated law rather than prescribed as a constant. The convergence speed of feedback strength is regulated by a constant. With rigorous linear algebraic theorems and precisely numerical matrix computations, a reasonable interval in which the ultimate final control strength dwells is suggested, and the reliability of synchronization state is guaranteed. It demonstrates that the unidirectional full-state linear feedback coupling scheme can be adopted to control and synchronize FOD chaotic systems directly. Numerical simulations of three representative FOD chaotic systems illustrate the effectiveness of the proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.