Reactive oxygen species (ROS) play a crucial role in the inflammatory response and cytokine outbreak, such as during virus infections, diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. Therefore, antioxidant is an important medicine to ROS-related diseases. For example, ascorbic acid (vitamin C, VC) was suggested as the candidate antioxidant to treat multiple diseases. However, long-term use of high-dose VC causes many side effects. In this review, we compare and analyze all kinds of mitochondrion-permeable antioxidants, including edaravone, idebenone, α-Lipoic acid, carotenoids, vitamin E, and coenzyme Q10, and mitochondria-targeted antioxidants MitoQ and SkQ and propose astaxanthin (a special carotenoid) to be the best antioxidant for ROS-burst-mediated acute diseases, like avian influenza infection and ischemia-reperfusion. Nevertheless, astaxanthins are so unstable that most of them are inactivated after oral administration. Therefore, astaxanthin injection is suggested hypothetically. The drawbacks of the antioxidants are also reviewed, which limit the use of antioxidants as coadjuvants in the treatment of ROS-associated disorders.
SummaryMammal red blood cells (erythrocytes) contain neither nucleus nor mitochondria. Traditional theory suggests that the presence of a nucleus would prevent big nucleated erythrocytes to squeeze through these small capillaries. However, nucleus is too small to hinder erythrocyte deformation. And, there is no sound reason to abandon mitochondria for the living cells. Here, we found that mammal erythrocyte reactive oxygen species (ROS) levels kept stable under diabetes, ischemia reperfusion, and malaria conditions or in vitro sugar/heme treatments, whereas bird erythrocyte ROS levels increased dramatically in these circumstances. Nuclear and mitochondrial extrusion may help mammal erythrocytes to better adapt to high-sugar and high-heme conditions by limiting ROS generation.
IUBMBIUBMB Life, 63(7): [560][561][562][563][564][565] 2011
Nitric oxide (NO) is extensively involved in various growth processes and stress responses in plants; however, the regulatory mechanism of NO-modulated cellular sugar metabolism is still largely unknown. Here, we report that NO significantly inhibited monosaccharide catabolism by modulating sugar metabolic enzymes through S-nitrosylation (mainly by oxidizing dihydrolipoamide, a cofactor of pyruvate dehydrogenase). These S-nitrosylation modifications led to a decrease in cellular glycolysis enzymes and ATP synthase activities as well as declines in the content of acetyl coenzyme A, ATP, ADP-glucose and UDP-glucose, which eventually caused polysaccharide-biosynthesis inhibition and monosaccharide accumulation. Plant developmental defects that were caused by high levels of NO included delayed flowering time, retarded root growth and reduced starch granule formation. These phenotypic defects could be mediated by sucrose supplementation, suggesting an essential role of NO-sugar cross-talks in plant growth and development. Our findings suggest that molecular manipulations could be used to improve fruit and vegetable sweetness.
Cellular total RNA level is usually stable, although it may increase gradually during growth or seed germination, or decrease gradually under environmental stresses. However, we found that plant cell RNA could be doubled within 48 h in response to herbicide-induced Mg-protoporphyrin and heme accumulation or a high level of sugar treatment. This rapid RNA multiplication is important for effective cellular resistance to oxidative stress, such as high-light and herbicide co-stress conditions, where the plastid-signalling defective mutant gun1 shows an apparent phenotype (more severe photobleaching). Hexokinase is required for sugar-induced RNA multiplication. While both sugar and Mg-protoporphyrin IX require plastid protein GUN1 and a nuclear transcription factor ABI4, haem appears to function through an independent pathway to control RNA multiplication. The transcription co-factor CAAT binding protein mediates the rapid RNA multiplication in plant cells in all the cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.