Current knowledge of RNA virus biodiversity is both biased and fragmentary, reflecting a focus on culturable or disease-causing agents. Here we profile the transcriptomes of over 220 invertebrate species sampled across nine animal phyla and report the discovery of 1,445 RNA viruses, including some that are sufficiently divergent to comprise new families. The identified viruses fill major gaps in the RNA virus phylogeny and reveal an evolutionary history that is characterized by both host switching and co-divergence. The invertebrate virome also reveals remarkable genomic flexibility that includes frequent recombination, lateral gene transfer among viruses and hosts, gene gain and loss, and complex genomic rearrangements. Together, these data present a view of the RNA virosphere that is more phylogenetically and genomically diverse than that depicted in current classification schemes and provide a more solid foundation for studies in virus ecology and evolution.
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
One of the most diverse clades of ciliated protozoa, the class Spirotrichea, displays a series of unique characters in terms of eukaryotic macronuclear (MAC) genome, including high fragmentation that produces nanochromosomes. However, the genomic diversity and evolution of nanochromosomes and gene families for spirotrich MAC genomes are poorly understood. In this study, we assemble the MAC genome of a representative euplotid (a new model organism in Spirotrichea) species, Euplotes aediculatus. Our results indicate that: (a) the MAC genome includes 35,465 contigs with a total length of 97.3 Mb and a contig N50 of 3.4 kb, and contains 13,145 complete nanochromosomes and 43,194 predicted genes, with the majority of these nanochromosomes containing tiny introns and harboring only one gene; (b) genomic comparisons between E. aediculatus and other reported spirotrichs indicate that average GC content and genome fragmentation levels exhibit interspecific variation, and chromosome breaking sites (CBSs) might be lost during evolution, resulting in the increase of multi-gene nanochromosome; (c) gene families associated with chitin metabolism and FoxO signaling pathway are expanded in E. aediculatus, suggesting their potential roles in environment adaptation and survival strategies of E. aediculatus; and (d) a programmed ribosomal frameshift (PRF) with a conservative motif 5′-AAATAR-3′ tends to occur in longer genes with more exons, and PRF genes play an important role in many cellular regulation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.